中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 39 Issue 4
Apr.  2023
Turn off MathJax
Article Contents

Role of new potential immune blocking molecules in the development and progression of hepatocellular carcinoma

DOI: 10.3969/j.issn.1001-5256.2023.04.031
Research funding:

National Natural Science Foundation of China (81660642);

Degree and Graduate Education Reform Project in Guangxi (JGY2022278)

More Information
  • Corresponding author: LIAO Zhangxiu, liaozhangxiu@163.com (ORCID: 0000-0001-5130-0642)
  • Received Date: 2022-08-03
  • Accepted Date: 2022-09-07
  • Published Date: 2023-04-20
  • Hepatocellular carcinoma (HCC) is one of the most common malignant tumors around the world. The emergence of immune checkpoint inhibitors targeting programmed death-1/programmed death-ligand 1 and cytotoxic T lymphocyte-associated antigen-4 has brought great breakthroughs in the treatment of HCC. However, since HCC is a type of tumor with high heterogeneity, monotherapy is only effective for a small number of patients and may not be able to achieve long-lasting benefits due to drug resistance, and therefore, it is necessary to explore the potential of new immune checkpoint inhibitors in the prevention and treatment of HCC. This article analyzes and summarizes the biological characteristics of the new immune checkpoints T cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin suppressor of T-cell activation (VISTA), B and T lymphocyte attenuator (BTLA), and B7 homologous protein-4 (B7-H4) and their expression and function in HCC. The analysis shows that TIGIT, VISTA, BTLA, and B7-H4 are highly expressed in HCC tissue and are associated with the prognosis of HCC patients, and targeted blocking of corresponding pathways can effectively inhibit the progression of HCC, suggesting that these molecules are potential targets for tumor treatment and that in-depth studies can provide new directions for HCC immunotherapy.

     

  • loading
  • [1]
    SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2]
    CAO W, CHEN HD, YU YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
    [3]
    General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.

    国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
    [4]
    FLECKEN T, SCHMIDT N, HILD S, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma[J]. Hepatology, 2014, 59(4): 1415-1426. DOI: 10.1002/hep.26731.
    [5]
    CHANG YY, YAN B, LI R. Research progress in the mechanism of T cell exhaustion and its application in the immunotherapy for cancer[J]. Current Immunol, 2022, 42(2): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202202013.htm

    常媛媛, 颜波, 李榕. T细胞耗竭发生机制及其在免疫治疗中的研究进展[J]. 现代免疫学, 2022, 42(2): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202202013.htm
    [6]
    HUANG C, ZHU HX, YAO Y, et al. Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases[J]. J Autoimmun, 2019, 104: 102333. DOI: 10.1016/j.jaut.2019.102333.
    [7]
    SCHEINER B, KIRSTEIN MM, HUCKE F, et al. Programmed cell death protein-1 (PD-1)-targeted immunotherapy in advanced hepatocellular carcinoma: efficacy and safety data from an international multicentre real-world cohort[J]. Aliment Pharmacol Ther, 2019, 49(10): 1323-1333. DOI: 10.1111/apt.15245.
    [8]
    SANGRO B, GOMEZ-MARTIN C, DE LA MATA M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C[J]. J Hepatol, 2013, 59(1): 81-88. DOI: 10.1016/j.jhep.2013.02.022.
    [9]
    ZHAO RP, LUO HF, CHEN LJ, et al. Observation and nursing of common adverse reactions of PD-1 inhibitor in the treatment of liver cancer[J]. Chin Gen Pract Nurs, 2022, 20(7): 975-977. DOI: 10.12104/j.issn.1674-4748.2022.07.030.

    赵汝平, 骆惠芬, 陈柳坚, 等. PD-1抑制剂治疗肝癌常见不良反应的观察与护理[J]. 全科护理, 2022, 20(7): 975-977. DOI: 10.12104/j.issn.1674-4748.2022.07.030.
    [10]
    ZHANG C, WANG Y, XUN X, et al. TIGIT can exert immunosuppressive effects on CD8+ T cells by the CD155/TIGIT signaling pathway for hepatocellular carcinoma in vitro[J]. J Immunother, 2020, 43(8): 236-243. DOI: 10.1097/CJI.0000000000000330.
    [11]
    YU X, HARDEN K, GONZALEZ LC, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J]. Nat Immunol, 2009, 10(1): 48-57. DOI: 10.1038/ni.1674.
    [12]
    STANIETSKY N, SIMIC H, ARAPOVIC J, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity[J]. Proc Natl Acad Sci U S A, 2009, 106(42): 17858-17863. DOI: 10.1073/pnas.0903474106.
    [13]
    OSTROUMOV D, DUONG S, WINGERATH J, et al. Transcriptome profiling identifies TIGIT as a marker of T-cell exhaustion in liver cancer[J]. Hepatology, 2021, 73(4): 1399-1418. DOI: 10.1002/hep.31466.
    [14]
    LIU JX. Study on the mechanism of negative co-stimulatory molecule TIGIT regulating the biological functions liver cancer cells and immune cells[D]. Yinchuan: Ningxia Medical University, 2020.

    刘娟喜. TIGIT负性共刺激分子调控肝癌细胞、免疫细胞生物学功能的机制研究[D]. 银川: 宁夏医科大学, 2020.
    [15]
    LU Y, SUN R, TIAN ZG, et al. Study on role of TIGIT in HBV immunotherapy[J]. Chin J Immunol, 2022, 38(2): 129-134. DOI: 10.3969/j.issn.1000-484X.2022.02.001.

    卢杨, 孙汭, 田志刚, 等. TIGIT分子在HBV免疫治疗中的作用探究[J]. 中国免疫学杂志, 2022, 38(2): 129-134. DOI: 10.3969/j.issn.1000-484X.2022.02.001.
    [16]
    GE Z, ZHOU G, CAMPOS CARRASCOSA L, et al. TIGIT and PD1 co-blockade restores ex vivo functions of human tumor-infiltrating CD8+ T cells in hepatocellular carcinoma[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(2): 443-464. DOI: 10.1016/j.jcmgh.2021.03.003.
    [17]
    Tiragolumab impresses in multiple trials[J]. Cancer Discov, 2020, 10(8): 1086-1087. DOI: 10.1158/2159-8290.CD-NB2020-063.
    [18]
    WANG L, RUBINSTEIN R, LINES JL, et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses[J]. J Exp Med, 2011, 208(3): 577-592. DOI: 10.1084/jem.20100619.
    [19]
    SLATER BT, HAN X, CHEN L, et al. Structural insight into T cell coinhibition by PD-1H (VISTA)[J]. Proc Natl Acad Sci U S A, 2020, 117(3): 1648-1657. DOI: 10.1073/pnas.1908711117.
    [20]
    FLIES DB, WANG S, XU H, et al. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models[J]. J Immunol, 2011, 187(4): 1537-1541. DOI: 10.4049/jimmunol.1100660.
    [21]
    XIE X, CHEN C, CHEN W, et al. Structural basis of VSIG3: The ligand for VISTA[J]. Front Immunol, 2021, 12: 625808. DOI: 10.3389/fimmu.2021.625808.
    [22]
    ELTANBOULY MA, ZHAO Y, NOWAK E, et al. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance[J]. Science, 2020, 367(6475): eaay0524. DOI: 10.1126/science.aay0524.
    [23]
    WANG G, TAI R, WU Y, et al. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers[J]. Cytokine Growth Factor Rev, 2020, 52: 1-14. DOI: 10.1016/j.cytogfr.2020.02.002.
    [24]
    XIANG J. Expression and clinical significance of negative immune checkpoint regulator VISTA in hepatocellular carcinoma[D]. Fuzhou: Fujian Medical University, 2018.

    向娟. 负性共刺激分子VISTA在肝细胞肝癌中的表达及其临床价值的研究[D]. 福州: 福建医科大学, 2018.
    [25]
    SHRESTHA R, PRITHVIRAJ P, ANAKA M, et al. Monitoring immune checkpoint regulators as predictive biomarkers in hepatocellular carcinoma[J]. Front Oncol, 2018, 8: 269. DOI: 10.3389/fonc.2018.00269.
    [26]
    ZHANG M. Expression of immune checkpoint protein VISTA in hepatocellular carcinoma and its effect on tumor microenvironment and prognosis of patients with liver cancer[D]. Guangzhou: Southern Medical University, 2018.

    张明. 免疫检查点蛋白VISTA在肝细胞癌中的表达及对肿瘤微环境和肝癌患者预后的影响[D]. 广州: 南方医科大学, 2018.
    [27]
    LIU J, YUAN Y, CHEN W, et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses[J]. Proc Natl Acad Sci U S A, 2015, 112(21): 6682-6687. DOI: 10.1073/pnas.1420370112.
    [28]
    KONDO Y, OHNO T, NISHⅡ N, et al. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma[J]. Oral Oncol, 2016, 57: 54-60. DOI: 10.1016/j.oraloncology.2016.04.005.
    [29]
    DEMPKE W, FENCHEL K, UCIECHOWSKI P, et al. Second- and third-generation drugs for immuno-oncology treatment-The more the better?[J]. Eur J Cancer, 2017, 74: 55-72. DOI: 10.1016/j.ejca.2017.01.001.
    [30]
    CEERAZ S, NOWAK EC, NOELLE RJ. B7 family checkpoint regulators in immune regulation and disease[J]. Trends Immunol, 2013, 34(11): 556-563. DOI: 10.1016/j.it.2013.07.003.
    [31]
    CHEUNG TC, OBORNE LM, STEINBERG MW, et al. T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment[J]. J Immunol, 2009, 183(11): 7286-7296. DOI: 10.4049/jimmunol.0902490.
    [32]
    DEL RIO ML, KAYE J, RODRIGUEZ-BARBOSA JI. Detection of protein on BTLAlow cells and in vivo antibody-mediated down-modulation of BTLA on lymphoid and myeloid cells of C57BL/6 and BALB/c BTLA allelic variants[J]. Immunobiology, 2010, 215(7): 570-578. DOI: 10.1016/j.imbio.2009.09.008.
    [33]
    DONG MP, ENOMOTO M, THUY L, et al. Clinical significance of circulating soluble immune checkpoint proteins in sorafenib-treated patients with advanced hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 3392. DOI: 10.1038/s41598-020-60440-5.
    [34]
    PAULOS CM, JUNE CH. Putting the brakes on BTLA in T cell-mediated cancer immunotherapy[J]. J Clin Invest, 2010, 120(1): 76-80. DOI: 10.1172/JCI41811.
    [35]
    GONZALEZ LC, LOYET KM, CALEMINE-FENAUX J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator[J]. Proc Natl Acad Sci U S A, 2005, 102(4): 1116-1121. DOI: 10.1073/pnas.0409071102.
    [36]
    GAVRIELI M, WATANABE N, LOFTIN SK, et al. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2[J]. Biochem Biophys Res Commun, 2003, 312(4): 1236-1243. DOI: 10.1016/j.bbrc.2003.11.070.
    [37]
    LIU J, LI J, HE M, et al. Distinct changes of BTLA and HVEM expressions in circulating CD4+ and CD8+ T cells in hepatocellular carcinoma patients[J]. J Immunol Res, 2018, 2018: 4561571. DOI: 10.1155/2018/4561571.
    [38]
    ZHAO QY, HUANG ZL, WU ZB, et al. New BTLA+ PD-1+ depleted T cells predict the treatment of liver cancer with PD-1 monoclonal antibody[Z]. The Third Affiliated Hospital of Sun Yat-sen University, 2020.

    赵绮毅, 黄湛镰, 邬喆斌, 等. 新型BTLA+PD-1+耗竭T细胞预测PD-1单抗治疗肝癌[Z]. 中山大学附属第三医院, 2020.
    [39]
    SICA GL, CHOI IH, ZHU G, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity[J]. Immunity, 2003, 18(6): 849-861. DOI: 10.1016/s1074-7613(03)00152-3.
    [40]
    CHE F, HENG X, ZHANG H, et al. Novel B7-H4-mediated crosstalk between human non-Hodgkin lymphoma cells and tumor-associated macrophages leads to immune evasion via secretion of IL-6 and IL-10[J]. Cancer Immunol Immunother, 2017, 66(6): 717-729. DOI: 10.1007/s00262-017-1961-7.
    [41]
    JEON YK, PARK SG, CHOI IW, et al. Cancer cell-associated cytoplasmic B7-H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation[J]. Biochem Biophys Res Commun, 2015, 459(2): 277-283. DOI: 10.1016/j.bbrc.2015.02.098.
    [42]
    JOHN P, WEI Y, LIU W, et al. The B7x immune checkpoint pathway: from discovery to clinical trial[J]. Trends Pharmacol Sci, 2019, 40(11): 883-896. DOI: 10.1016/j.tips.2019.09.008.
    [43]
    HAO TT. Study on the effect and mechanism of B7-H4 on apoptosis and autophagy of liver cancer cells[D]. Chongqing: Chongqing Medical University, 2020.

    郝团团. B7-H4对肝癌细胞凋亡和自噬的影响及机制研究[D]. 重庆: 重庆医科大学, 2020.
    [44]
    CHEN FS, ZHANG SA, WU ZX, et al. Diagnostic and prognostic prediction value of serum B7-H4 level for hepatocellular carcinoma[J]. Prog Mod Biomed, 2018, 18(10): 1960-1964. DOI: 10.13241/j.cnki.pmb.2018.10.032.

    陈丰穗, 张世安, 吴志贤, 等. 血清B7-H4水平对肝细胞癌的诊断及预后价值[J]. 现代生物医学进展, 2018, 18(10): 1960-1964. DOI: 10.13241/j.cnki.pmb.2018.10.032.
    [45]
    HE T, HU H, XIE N, et al. The expression of B7-H4 in liver cancer and its effect on cell invasion and migration[J]. Anhui Med Pharm J, 2019, 23(9): 1774-1778, back insert 3. DOI: 10.3969/j.issn.1009-6469.2019.09.019.

    何涛, 胡洪, 谢楠, 等. B7-H4在肝癌组织中的表达及其对肝癌细胞侵袭、迁移的影响[J]. 安徽医药, 2019, 23(9): 1774-1778, 后插3. DOI: 10.3969/j.issn.1009-6469.2019.09.019.
    [46]
    TARANTINO P, CARMAGNANI PESTANA R, CORTI C, et al. Antibody-drug conjugates: Smart chemotherapy delivery across tumor histologies[J]. CA Cancer J Clin, 2022, 72(2): 165-182. DOI: 10.3322/caac.21705.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (274) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return