中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 8
Aug.  2022
Turn off MathJax
Article Contents

Current status of the research on microenvironment-targeting therapy and immunotherapy for liver cancer

DOI: 10.3969/j.issn.1001-5256.2022.08.038
Research funding:

The Central Government Guides Local Science And Technology Development Projects (2019A4005)

More Information
  • Corresponding author: DING Youming, dingym62@163.com(ORCID: 0000-0001-6695-3275)
  • Received Date: 2022-01-13
  • Accepted Date: 2022-02-23
  • Published Date: 2022-08-20
  • Tumor microenvironment is composed of tumor cells and their internal and external environment, and the components vary slightly between different types of tumor. Liver cancer microenvironment is a tumor-promoting microenvironment constructed by hepatoma cells and immune cells and can lead to the development, invasion, and metastasis of liver cancer by recruiting inflammatory cells, inhibiting antitumor immune response, promoting angiogenesis, and promoting drug resistance. This article discusses the characteristics of liver cancer microenvironment, the composition and role of liver cancer microenvironment, and the new advances in microenvironment-targeting therapy for liver cancer.

     

  • loading
  • [1]
    YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
    [2]
    ANDERSON NM, SIMON MC. The tumor microenvironment[J]. Curr Biol, 2020, 30(16): R921-921R. DOI: 10.1016/j.cub.2020.06.081.
    [3]
    JIANG SS, TANG Y, ZHANG YJ, et al. A phase Ⅰ clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma[J]. Oncotarget, 2015, 6(38): 41339-41349. DOI: 10.18632/oncotarget.5463.
    [4]
    ZHOU SL, ZHOU ZJ, HU ZQ, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib[J]. Gastroenterology, 2016, 150(7): 1646-1658. e17. DOI: 10.1053/j.gastro.2016.02.040.
    [5]
    CAO X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease[J]. Nat Rev Immunol, 2016, 16(1): 35-50. DOI: 10.1038/nri.2015.8.
    [6]
    WAKISAKA N, HASEGAWA Y, YOSHIMOTO S, et al. Primary tumor-secreted lymphangiogenic factors induce pre-metastatic lymphvascular niche formation at sentinel lymph nodes in oral squamous cell carcinoma[J]. PLoS One, 2015, 10(12): e0144056. DOI: 10.1371/journal.pone.0144056.
    [7]
    SEEHAWER M, HEINZMANN F, D'ARTISTA L, et al. Necroptosis microenvironment directs lineage commitment in liver cancer[J]. Nature, 2018, 562(7725): 69-75. DOI: 10.1038/s41586-018-0519-y.
    [8]
    DONG LQ, PENG LH, MA LJ, et al. Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma[J]. J Hepatol, 2020, 72(5): 896-908. DOI: 10.1016/j.jhep.2019.12.014.
    [9]
    SUN Y, WU L, ZHONG Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma[J]. Cell, 2021, 184(2): 404-421. e16. DOI: 10.1016/j.cell.2020.11.041.
    [10]
    AFFO S, YU LX, SCHWABE RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer[J]. Annu Rev Pathol, 2017, 12: 153-186. DOI: 10.1146/annurev-pathol-052016-100322.
    [11]
    YAVUZ BG, PESTANA RC, ABUGABAL YI, et al. Origin and role of hepatic myofibroblasts in hepatocellular carcinoma[J]. Oncotarget, 2020, 11(13): 1186-1201. DOI: 10.18632/oncotarget.27532.
    [12]
    DENG Y, CHENG J, FU B, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells[J]. Oncogene, 2017, 36(8): 1090-1101. DOI: 10.1038/onc.2016.273.
    [13]
    ZHOU Y, REN H, DAI B, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts[J]. J Exp Clin Cancer Res, 2018, 37(1): 324. DOI: 10.1186/s13046-018-0965-2.
    [14]
    JI Q, ZHOU L, SUI H, et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation[J]. Nat Commun, 2020, 11(1): 1211. DOI: 10.1038/s41467-020-14869-x.
    [15]
    WILSON JL, NÄGELE T, LINKE M, et al. Inverse data-driven modeling and multiomics analysis reveals phgdh as a metabolic checkpoint of macrophage polarization and proliferation[J]. Cell Rep, 2020, 30(5): 1542-1552. e7. DOI: 10.1016/j.celrep.2020.01.011.
    [16]
    PETTY AJ, LI A, WANG X, et al. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment[J]. J Clin Invest, 2019, 129(12): 5151-5162. DOI: 10.1172/JCI128644.
    [17]
    WU L, ZHANG X, ZHENG L, et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis[J]. Cancer Immunol Res, 2020, 8(5): 710-721. DOI: 10.1158/2326-6066.CIR-19-0261.
    [18]
    SHARMA A, SEOW J, DUTERTRE CA, et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma[J]. Cell, 2020, 183(2): 377-394. e21. DOI: 10.1016/j.cell.2020.08.040.
    [19]
    DING T, XU J, WANG F, et al. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection[J]. Hum Pathol, 2009, 40(3): 381-389. DOI: 10.1016/j.humpath.2008.08.011.
    [20]
    DI PILATO M, KFURI-RUBENS R, PRUESSMANN JN, et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment[J]. Cell, 2021, 184(17): 4512-4530. e22. DOI: 10.1016/j.cell.2021.07.015.
    [21]
    HUANG D, CHEN X, ZENG X, et al. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer[J]. Nat Immunol, 2021, 22(7): 865-879. DOI: 10.1038/s41590-021-00939-9.
    [22]
    MAJ T, WANG W, CRESPO J, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor[J]. Nat Immunol, 2017, 18(12): 1332-1341. DOI: 10.1038/ni.3868.
    [23]
    CÓZAR B, GREPPI M, CARPENTIER S, et al. Tumor-infiltrating natural killer cells[J]. Cancer Discov, 2021, 11(1): 34-44. DOI: 10.1158/2159-8290.CD-20-0655.
    [24]
    HARMON C, ROBINSON MW, FAHEY R, et al. Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver[J]. Eur J Immunol, 2016, 46(9): 2111-2120. DOI: 10.1002/eji.201646559.
    [25]
    POZNANSKI SM, SINGH K, RITCHIE TM, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment[J]. Cell Metab, 2021, 33(6): 1205-1220. e5. DOI: 10.1016/j.cmet.2021.03.023.
    [26]
    TALMADGE JE, GABRILOVICH DI. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10): 739-752. DOI: 10.1038/nrc3581.
    [27]
    TIAN X, SHEN H, LI Z, et al. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment[J]. J Hematol Oncol, 2019, 12(1): 84. DOI: 10.1186/s13045-019-0772-z.
    [28]
    LIAO W, OVERMAN MJ, BOUTIN AT, et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer[J]. Cancer Cell, 2019, 35(4): 559-572. e7. DOI: 10.1016/j.ccell.2019.02.008.
    [29]
    CONSTANTINO J, GOMES C, FALCÃ OA, et al. Dendritic cell-based immunotherapy: a basic review and recent advances[J]. Immunol Res, 2017, 65(4): 798-810. DOI: 10.1007/s12026-017-8931-1.
    [30]
    SZCZERBA BM, CASTRO-GINER F, VETTER M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression[J]. Nature, 2019, 566(7745): 553-557. DOI: 10.1038/s41586-019-0915-y.
    [31]
    WEN ZF, LIU H, GAO R, et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1[J]. J Immunother Cancer, 2018, 6(1): 151. DOI: 10.1186/s40425-018-0452-5.
    [32]
    ANDZINSKI L, KASNITZ N, STAHNKE S, et al. Type Ⅰ IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human[J]. Int J Cancer, 2016, 138(8): 1982-1993. DOI: 10.1002/ijc.29945.
    [33]
    WANG D, BAI N, HU X, et al. Preoperative inflammatory markers of NLR and PLR as indicators of poor prognosis in resectable HCC[J]. Peer J, 2019, 7: e7132. DOI: 10.7717/peerj.7132.
    [34]
    RUHLAND MK, ROBERTS EW, CAI E, et al. Visualizing synaptic transfer of tumor antigens among dendritic cells[J]. Cancer Cell, 2020, 37(6): 786-799. e5. DOI: 10.1016/j.ccell.2020.05.002.
    [35]
    XIANG Y, YAO X, WANG X, et al. Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: in vivo and in vitro[J]. Biosci Rep, 2019, 39(10): 1006. DOI: 10.1042/BSR20191006.
    [36]
    ZHANG N, YIN R, ZHOU P, et al. DLL1 orchestrates CD8+ T cells to induce long-term vascular normalization and tumor regression[J]. Proc Natl Acad Sci U S A, 2021, 118(22): e2020057118. DOI: 10.1073/pnas.2020057118.
    [37]
    ZHAO W, CAO L, YING H, et al. Endothelial CDS2 deficiency causes VEGFA-mediated vascular regression and tumor inhibition[J]. Cell Res, 2019, 29(11): 895-910. DOI: 10.1038/s41422-019-0229-5.
    [38]
    CORN KC, WINDHAM MA, RAFAT M. Lipids in the tumor microenvironment: From cancer progression to treatment[J]. Prog Lipid Res, 2020, 80: 101055. DOI: 10.1016/j.plipres.2020.101055.
    [39]
    HAUGE A, ROFSTAD EK. Antifibrotic therapy to normalize the tumor microenvironment[J]. J Transl Med, 2020, 18(1): 207. DOI: 10.1186/s12967-020-02376-y.
    [40]
    WAN S, ZHAO E, KRYCZEK I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014, 147(6): 1393-1404. DOI: 10.1053/j.gastro.2014.08.039.
    [41]
    LIU Q, ZHU H, TIRUTHANI K, et al. Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma[J]. ACS Nano, 2018, 12(2): 1250-1261. DOI: 10.1021/acsnano.7b07384.
    [42]
    CUI X, MA C, VASUDEVARAJA V, et al. Dissecting the immunosuppressive tumor microenvironments in glioblastoma-on-a-chip for optimized PD-1 immunotherapy[J]. Elife, 2020, 9: e52253. DOI: 10.7554/eLife.52253.
    [43]
    KANG FB, WANG L, LI D, et al. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression[J]. Oncol Rep, 2015, 33(1): 274-282. DOI: 10.3892/or.2014.3587.
    [44]
    LI M, LI S, ZHOU H, et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy[J]. Nat Commun, 2020, 11(1): 1126. DOI: 10.1038/s41467-020-14963-0.
    [45]
    ROHANI N, HAO L, ALEXIS MS, et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes[J]. Cancer Res, 2019, 79(8): 1952-1966. DOI: 10.1158/0008-5472.CAN-18-1604.
    [46]
    WU Q, ZHOU L, LV D, et al. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression[J]. J Hematol Oncol, 2019, 12(1): 53. DOI: 10.1186/s13045-019-0739-0.
    [47]
    BADER JE, VOSS K, RATHMELL JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy[J]. Mol Cell, 2020, 78(6): 1019-1033. DOI: 10.1016/j.molcel.2020.05.034.
    [48]
    DUPERRET EK, TRAUTZ A, AMMONS D, et al. Alteration of the tumor stroma using a consensus DNA vaccine targeting fibroblast activation protein (FAP) synergizes with antitumor vaccine therapy in mice[J]. Clin Cancer Res, 2018, 24(5): 1190-1201. DOI: 10.1158/1078-0432.CCR-17-2033.
    [49]
    PARK AK, FONG Y, KIM SI, et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors[J]. Sci Transl Med, 2020, 12(559): eaaz1863. DOI: 10.1126/scitranslmed.aaz1863.
    [50]
    CHEN Y, ZANDER RA, WU X, et al. BATF regulates progenitor to cytolytic effector CD8+ T cell transition during chronic viral infection[J]. Nat Immunol, 2021, 22(8): 996-1007. DOI: 10.1038/s41590-021-00965-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (498) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return