中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 6
Jun.  2022
Turn off MathJax
Article Contents

Role of N6-methyladenosine methylation in hepatitis B virus infection

DOI: 10.3969/j.issn.1001-5256.2022.06.034
More Information
  • Corresponding author: FAN Chao, fanchao83@163.com(ORCID: 0000-0002-3834-6483)
  • Received Date: 2021-11-09
  • Accepted Date: 2021-12-29
  • Published Date: 2022-06-20
  • The phenomenon of N6-methyladenosine (m6A)-methylation is commonly observed in various tissues and cells of the human body and is the most common type of internal modification in eukaryotic mRNA. m6A-methylation is dynamic and reversible, which is regulated by various methyltransferases, demethylases, and m6A binding protein. Recent studies have shown that m6A modification can affect viral gene expression and plays an important role in the process of HBV infection. This article summarizes the current research status and mechanism of m6A-methylation, especially its association with HBV infection. This article also elaborates on the effect of m6A modification on HBV transcripts, reviews the research findings of m6A in immune response of HBV infection, and summarizes the effect of HBV infection on m6A modification in normal host hepatocytes and hepatitis B liver cancer, so as to discuss the development direction and potential value of m6A in HBV infection.

     

  • loading
  • [1]
    BOCCALETTO P, MACHNICKA MA, PURTA E, et al. MODOMICS: a data base of RNA modification pathways. 2017 update[J]. Nucleic Acids Res, 2018, 46(Issue D1): 303-307.
    [2]
    WU F, CHENG W, ZHAO F, et al. Association of N6-methyladenosine with viruses and virally induced diseases[J]. Front Biosci (Landmark Ed), 2020, 25(6): 1184-1201. DOI: 10.2741/4852.
    [3]
    VANDIVIER LE, GREGORY BD. Reading the epitranscriptome: New techniques and perspectives[J]. Enzymes, 2017, 41: 269-298. DOI: 10.1016/bs.enz.2017.03.004.
    [4]
    GROZHIK AV, LINDER B, OLARERIN-GEORGE AO, et al. Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP)[J]. Methods Mol Biol, 2017, 1562: 55-78. DOI: 10.1007/978-1-4939-6807-7_5.
    [5]
    KE S, PANDYA-JONES A, SAITO Y, et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover[J]. Genes Dev, 2017, 31(10): 990-1006. DOI: 10.1101/gad.301036.117.
    [6]
    XIAO Y, WANG Y, TANG Q, et al. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N6-methyladenosine modification[J]. Angew Chem Int Ed Engl, 2018, 57(49): 15995-16000. DOI: 10.1002/anie.201807942.
    [7]
    WILLIAMS GD, GOKHALE NS, HORNER SM. Regulation of Viral Infection by the RNA Modification N6-Methyladenosine[J]. Annu Rev Virol, 2019, 6(1): 235-253. DOI: 10.1146/annurev-virology-092818-015559.
    [8]
    ZHAO BS, HE C. "Gamete On" for m6A: YTHDF2 exerts essential functions in female fertility[J]. Mol Cell, 2017, 67(6): 903-905. DOI: 10.1016/j.molcel.2017.09.004.
    [9]
    WU F, CHENG W, ZHAO F, et al. Association of N6-methyladenosine with viruses and related diseases[J]. Virol J, 2019, 16(1): 133. DOI: 10.1186/s12985-019-1236-3.
    [10]
    IMAM H, KHAN M, GOKHALE NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8829-8834. DOI: 10.1073/pnas.1808319115.
    [11]
    LIU Y, YOU Y, LU Z, et al. N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication[J]. Science, 2019, 365(6458): 1171-1176. DOI: 10.1126/science.aax4468.
    [12]
    HSU PJ, ZHU Y, MA H, et al. YTHDC2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27(9): 1115-1127. DOI: 10.1038/cr.2017.99.
    [13]
    WARDA AS, KRETSCHMER J, HACKERT P, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs[J]. EMBO Rep, 2017, 18(11): 2004-2014. DOI: 10.15252/embr.201744940.
    [14]
    IANNIELLO Z, FATICA A. N6 -methyladenosine role in acute myeloid leukaemia[J]. Int J Mol Sci, 2018, 19(8): 2345. DOI: 10.3390/ijms19082345.
    [15]
    PENDLETON KE, CHEN B, LIU K, et al. The U6 snRNA m6A methyltransferase mettl16 regulates SAM synthetase intron retention[J]. Cell, 2017, 169(5): 824-835.e14. DOI: 10.1016/j.cell.2017.05.003.
    [16]
    DOXTADER KA, WANG P, SCARBOROUGH AM, et al. Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor[J]. Mol Cell, 2018, 71(6): 1001-1011.e4. DOI: 10.1016/j.molcel.2018.07.025.
    [17]
    SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3): 315-328. DOI: 10.1038/cr.2017.15.
    [18]
    LI A, CHEN YS, PING XL, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017, 27(3): 444-447. DOI: 10.1038/cr.2017.10.
    [19]
    ROUNDTREE IA, LUO GZ, ZHANG Z, et al. YTHDC1 mediates nuclear export of N6 -methyladenosine methylated mRNAs[J]. Elife, 2017, 6: e31311. DOI: 10.7554/eLife.31311.
    [20]
    MAUER J, LUO X, BLANJOIE A, et al. Reversible methylation of m6Am in the 5' cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375. DOI: 10.1038/nature21022.
    [21]
    HU J, PROTZER U, SIDDIQUI A. Revisiting hepatitis B virus: Challenges of curative therapies[J]. J Virol, 2019, 93(20): e01032-19. DOI: 10.1128/JVI.01032-19.
    [22]
    KIM GW, SIDDIQUI A. The role of N6-methyladenosine modification in the life cycle and disease pathogenesis of hepatitis B and C viruses[J]. Exp Mol Med, 2021, 53(3): 339-345. DOI: 10.1038/s12276-021-00581-3.
    [23]
    IMAM H, KIM GW, SIDDIQUI A. Epitranscriptomic(N6-methyladenosine) modification of viral RNA and virus-host interactions[J]. Front Cell Infect Microbiol, 2020, 10: 584283. DOI: 10.3389/fcimb.2020.584283.
    [24]
    KIM GW, IMAM H, KHAN M, et al. N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling[J]. J Biol Chem, 2020, 295(37): 13123-13133. DOI: 10.1074/jbc.RA120.014260.
    [25]
    LIU Y, NIE H, MAO R, et al. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA[J]. PLoS Pathog, 2017, 13(4): e1006296. DOI: 10.1371/journal.ppat.1006296.
    [26]
    IMAM H, KIM GW, MIR SA, et al. Interferon-stimulated gene 20 (ISG20) selectively degrades N6 -methyladenosine modified hepatitis B Virus transcripts[J]. PLoS Pathog, 2020, 16(2): e1008338. DOI: 10.1371/journal.ppat.1008338.
    [27]
    KIM GW, IMAM H, KHAN M, et al. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC[J]. Hepatology, 2021, 73(2): 533-547. DOI: 10.1002/hep.31313.
    [28]
    LI S, ZHU M, PAN R, et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity[J]. Nat Immunol, 2016, 17(3): 241-249. DOI: 10.1038/ni.3311.
    [29]
    KIM GW, SIDDIQUI A. Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6 -methyladenosine modification of viral/host RNAs[J]. Proc Natl Acad Sci U S A, 2021, 118(3): e2019455118. DOI: 10.1073/pnas.2019455118.
    [30]
    MINOR MM, HOLLINGER FB, MCNEES AL, et al. Hepatitis B virus HBx protein mediates the degradation of host restriction factors through the cullin 4 DDB1 E3 ubiquitin ligase complex[J]. Cells, 2020, 9(4): 834. DOI: 10.3390/cells9040834.
    [31]
    YUAN XD, WANG JW, FANG Y, et al. Methylation status of the T-cadherin gene promotor in peripheral blood mononuclear cells is associated with HBV-related hepatocellular carcinoma progression[J]. Pathol Res Pract, 2020, 216(5): 152914. DOI: 10.1016/j.prp.2020.152914.
    [32]
    CHEN M, WEI L, LAW CT, et al. RNA N6 -methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270. DOI: 10.1002/hep.29683.
    [33]
    CHEN CY, CHEN J, HE L, et al. PTEN: Tumor suppressor and metabolic regulator[J]. Front Endocrinol (Lausanne), 2018, 9: 338. DOI: 10.3389/fendo.2018.00338.
    [34]
    RINGELHAN M, MCKEATING JA, PROTZER U. Viral hepatitis and liver cancer[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1732): 20160274. DOI: 10.1098/rstb.2016.0274.
    [35]
    RAO X, LAI L, LI X, et al. N6 -methyladenosine modification of circular RNA circ-ARL3 facilitates hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305[J]. IUBMB Life, 2021, 73(2): 408-417. DOI: 10.1002/iub.2438.
    [36]
    HESSER CR, KARIJOLICH J, DOMINISSINI D, et al. N6 -methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection[J]. PLoS Pathog, 2018, 14(4): e1006995. DOI: 10.1371/journal.ppat.1006995.
    [37]
    TAN B, GAO SJ. The RNA epitranscriptome of DNA viruses[J]. J Virol, 2018, 92(22): e00696-18. DOI: 10.1128/JVI.00696-18.
    [38]
    GONZALES-VAN HORN SR, SARNOW P. Making the mark: The role of adenosine modifications in the life cycle of RNA viruses[J]. Cell Host Microbe, 2017, 21(6): 661-669. DOI: 10.1016/j.chom.2017.05.008.
    [39]
    COURTNEY DG, TSAI K, BOGERD HP, et al. Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression[J]. Cell Host Microbe, 2019, 26(2): 217-227.e6. DOI: 10.1016/j.chom.2019.07.005.
    [40]
    TSAI K, JAGUVA VASUDEVAN AA, MARTINEZ CAMPOS C, et al. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability[J]. Cell Host Microbe, 2020, 28(2): 306-312.e6. DOI: 10.1016/j.chom.2020.05.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (499) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return