中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 5
May  2022
Turn off MathJax
Article Contents

Role of cancer-associated fibroblasts in drug resistance of pancreatic cancer

DOI: 10.3969/j.issn.1001-5256.2022.05.048
Research funding:

Shanxi Province 2021 Scholarship Program for Science and Technology Activities (20210004)

More Information
  • Corresponding author: JIA Junmei, jiajunmei1972@163.com(ORCID: 0000-0002-9295-5351)
  • Received Date: 2021-09-03
  • Accepted Date: 2021-10-11
  • Published Date: 2022-05-20
  • Pancreatic cancer is one of the fatal malignant tumors, and its dense stroma, which accounts for 90% of the volume of pancreatic tumor, is the main reason for the low survival rate of pancreatic cancer. Cancer-associated fibroblasts (CAFs) are an important group of cells in the tumor stroma of pancreatic cancer, and activated CAFs induce a strong connective tissue interstitial reaction and secretes a variety of soluble molecules to remodel the extracellular matrix, thereby forming a microenvironment that helps with the proliferation, invasion, and metastasis of pancreatic cancer. At present, an increasing number of evidence has shown that CAFs play an important role in the drug resistance of pancreatic cancer, especially in chemotherapy and immunotherapy, and CAFs result in a low response rate of pancreatic cancer treatment by interfering with the metabolism of antitumor drugs, participating in the signaling pathways associated with drug resistance, and forming an immunosuppressive microenvironment. This article elaborates on the specific mechanism of CAFs participating in the drug resistance of pancreatic cancer from the two aspects of chemotherapy and immunotherapy, in order to provide new ideas for identifying new therapeutic targets for pancreatic cancer and improving the response rate of pancreatic cancer treatment.

     

  • loading
  • [1]
    SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
    [2]
    NEOPTOLEMOS JP, KLEEFF J, MICHL P, et al. Therapeutic developments in pancreatic cancer: Current and future perspectives[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 333-348. DOI: 10.1038/s41575-018-0005-x.
    [3]
    RIBAS A, WOLCHOK JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355. DOI: 10.1126/science.aar4060.
    [4]
    BEDNAR F, PASCA DI MAGLIANO M. Context-dependent immune responses explain pancreatic cancer immunoresistance[J]. Cancer Cell, 2020, 37(3): 261-263. DOI: 10.1016/j.ccell.2020.02.010.
    [5]
    LIANG C, SHI S, MENG Q, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: Where we are and where we are going[J]. Exp Mol Med, 2017, 49(12): e406. DOI: 10.1038/emm.2017.255.
    [6]
    POTHULA SP, XU Z, GOLDSTEIN D, et al. Key role of pancreatic stellate cells in pancreatic cancer[J]. Cancer Lett, 2016, 381(1): 194-200. DOI: 10.1016/j.canlet.2015.10.035.
    [7]
    STEER A, CORDES N, JENDROSSEK V, et al. Impact of cancer-associated fibroblast on the radiation-response of solid xenograft tumors[J]. Front Mol Biosci, 2019, 6: 70. DOI: 10.3389/fmolb.2019.00070.
    [8]
    OGIER C, COLOMBO PE, BOUSQUET C, et al. Targeting the NRG1/HER3 pathway in tumor cells and cancer-associated fibroblasts with an anti-neuregulin 1 antibody inhibits tumor growth in pre-clinical models of pancreatic cancer[J]. Cancer Lett, 2018, 432: 227-236. DOI: 10.1016/j.canlet.2018.06.023.
    [9]
    HESLER RA, HUANG JJ, STARR MD, et al. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3[J]. Carcinogenesis, 2016, 37(11): 1041-1051. DOI: 10.1093/carcin/bgw093.
    [10]
    LU JL, WANG LL, LIANG XL, et al. High-molecular-weight hyaluronan produced by activated pancreatic stellate cells promotes pancreatic cancer cell migration via paracrine signaling[J]. Biochem Biophys Res Commun, 2019, 515(3): 493-498. DOI: 10.1016/j.bbrc.2019.05.167.
    [11]
    DUFORT CC, DELGIORNO KE, CARLSON MA, et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase[J]. Biophys J, 2016, 110(9): 2106-2119. DOI: 10.1016/j.bpj.2016.03.040.
    [12]
    GOEHRIG D, NIGRI J, SAMAIN R, et al. Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer[J]. Gut, 2019, 68(4): 693-707. DOI: 10.1136/gutjnl-2018-317570.
    [13]
    HESSMANN E, PATZAK MS, KLEIN L, et al. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer[J]. Gut, 2018, 67(3): 497-507. DOI: 10.1136/gutjnl-2016-311954.
    [14]
    PUSCEDDU S, GHIDINI M, TORCHIO M, et al. Comparative effectiveness of gemcitabine plus nab-paclitaxel and FOLFIRINOX in the first-line setting of metastatic pancreatic cancer: A systematic review and meta-analysis[J]. Cancers (Basel), 2019, 11(4): 484. DOI: 10.3390/cancers11040484.
    [15]
    AMRUTKAR M, GLADHAUG IP. Pancreatic cancer chemoresistance to gemcitabine[J]. Cancers (Basel), 2017, 9(11): 157. DOI: 10.3390/cancers9110157.
    [16]
    AMRUTKAR M, VETHE NT, VERBEKE CS, et al. Differential gemcitabine sensitivity in primary human pancreatic cancer cells and paired stellate cells is driven by heterogenous drug uptake and processing[J]. Cancers (Basel), 2020, 12(12): 3628. DOI: 10.3390/cancers12123628.
    [17]
    HESLER RA, HUANG JJ, STARR MD, et al. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3[J]. Carcinogenesis, 2016, 37(11): 1041-1051. DOI: 10.1093/carcin/bgw093.
    [18]
    DALIN S, SULLIVAN MR, LAU AN, et al. Deoxycytidine release from pancreatic stellate cells promotes gemcitabine resistance[J]. Cancer Res, 2019, 79(22): 5723-5733. DOI: 10.1158/0008-5472.CAN-19-0960.
    [19]
    LIU SL, CAO SG, LI Y, et al. Pancreatic stellate cells facilitate pancreatic cancer cell viability and invasion[J]. Oncol Lett, 2019, 17(2): 2057-2062. DOI: 10.3892/ol.2018.9816.
    [20]
    AMRUTKAR M, AASRUM M, VERBEKE CS, et al. Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells[J]. BMC Cancer, 2019, 19(1): 596. DOI: 10.1186/s12885-019-5803-1.
    [21]
    PERAN I, DAKSHANAMURTHY S, MCCOY MD, et al. Cadherin 11 promotes immunosuppression and extracellular matrix deposition to support growth of pancreatic tumors and resistance to gemcitabine in mice[J]. Gastroenterology, 2021, 160(4): 1359-1372. e13. DOI: 10.1053/j.gastro.2020.11.044.
    [22]
    LEE J, YAKUBOV B, IVAN C, et al. Tissue transglutaminase activates cancer-associated fibroblasts and contributes to gemcitabine resistance in pancreatic cancer[J]. Neoplasia, 2016, 18(11): 689-698. DOI: 10.1016/j.neo.2016.09.003.
    [23]
    WEI L, YE H, LI G, et al. Correction: Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer[J]. Cell Death Dis, 2021, 12(3): 232. DOI: 10.1038/s41419-021-03420-5.
    [24]
    NEUMANN C, VON HÖRSCHELMANN E, REUTZEL-SELKE A, et al. Tumor-stromal cross-talk modulating the therapeutic response in pancreatic cancer[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(5): 461-472. DOI: 10.1016/j.hbpd.2018.09.004.
    [25]
    FELDMANN K, MAURER C, PESCHKE K, et al. Mesenchymal Plasticity regulated by prrx1 drives aggressive pancreatic cancer biology[J]. Gastroenterology, 2021, 160(1): 346-361. e24. DOI: 10.1053/j.gastro.2020.09.010.
    [26]
    WEI L, LIN Q, LU Y, et al. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/ SMAD2/3 pathway and ABCC1 transactivation[J]. Cell Death Dis, 2021, 12(4): 334. DOI: 10.1038/s41419-021-03574-2.
    [27]
    IRELAND L, SANTOS A, AHMED MS, et al. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors[J]. Cancer Res, 2016, 76(23): 6851-6863. DOI: 10.1158/0008-5472.CAN-16-1201.
    [28]
    ZHANG D, LI L, JIANG H, et al. Tumor-Stroma IL1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer[J]. Cancer Res, 2018, 78(7): 1700-1712. DOI: 10.1158/0008-5472.CAN-17-1366.
    [29]
    VENNIN C, MÉLÉNEC P, ROUET R, et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan[J]. Nat Commun, 2019, 10(1): 3637. DOI: 10.1038/s41467-019-10968-6.
    [30]
    TOSTE PA, NGUYEN AH, KADERA BE, et al. Chemotherapy-induced inflammatory gene signature and protumorigenic phenotype in pancreatic CAFs via stress-associated MAPK[J]. Mol Cancer Res, 2016, 14(5): 437-447. DOI: 10.1158/1541-7786.MCR-15-0348.
    [31]
    FANG Y, ZHOU W, RONG Y, et al. Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer[J]. Exp Cell Res, 2019, 383(1): 111543. DOI: 10.1016/j.yexcr.2019.111543.
    [32]
    CAO J, MA J, SUN L, et al. Targeting glypican-4 overcomes 5-FU resistance and attenuates stem cell-like properties via suppression of Wnt/β-catenin pathway in pancreatic cancer cells[J]. J Cell Biochem, 2018, 119(11): 9498-9512. DOI: 10.1002/jcb.27266.
    [33]
    ZHOU T, LIU J, XIE Y, et al. ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4[J]. Gut, 2022, 71(2): 357-371. DOI: 10.1136/gutjnl-2020-321952.
    [34]
    BEGUM A, MCMILLAN RH, CHANG YT, et al. Direct interactions with cancer-associated fibroblasts lead to enhanced pancreatic cancer stem cell function[J]. Pancreas, 2019, 48(3): 329-334. DOI: 10.1097/MPA.0000000000001249.
    [35]
    CHAN TS, HSU CC, PAI VC, et al. Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells[J]. J Exp Med, 2016, 213(13): 2967-2988. DOI: 10.1084/jem.20151665.
    [36]
    KUEN J, DAROWSKI D, KLUGE T, et al. Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model[J]. PLoS One, 2017, 12(7): e0182039. DOI: 10.1371/journal.pone.0182039.
    [37]
    DAS S, SHAPIRO B, VUCIC EA, et al. Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer[J]. Cancer Res, 2020, 80(5): 1088-1101. DOI: 10.1158/0008-5472.CAN-19-2080.
    [38]
    BLAIR AB, KIM VM, MUTH ST, et al. Dissecting the stromal signaling and regulation of myeloid cells and memory effector T cells in pancreatic cancer[J]. Clin Cancer Res, 2019, 25(17): 5351-5363. DOI: 10.1158/1078-0432.CCR-18-4192.
    [39]
    FAN CS, CHEN LL, HSU TA, et al. Endothelial-mesenchymal transition harnesses HSP90α-secreting M2-macrophages to exacerbate pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2019, 12(1): 138. DOI: 10.1186/s13045-019-0826-2.
    [40]
    ZHANG A, QIAN Y, YE Z, et al. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma[J]. Cancer Med, 2017, 6(2): 463-470. DOI: 10.1002/cam4.993.
    [41]
    NAJAFI M, HASHEMI GORADEL N, FARHOOD B, et al. Macrophage polarity in cancer: A review[J]. J Cell Biochem, 2019, 120(3): 2756-2765. DOI: 10.1002/jcb.27646.
    [42]
    van AUDENAERDE J, ROEYEN G, DARCY PK, et al. Natural killer cells and their therapeutic role in pancreatic cancer: A systematic review[J]. Pharmacol Ther, 2018, 189: 31-44. DOI: 10.1016/j.pharmthera.2018.04.003.
    [43]
    FRANCESCONE R, BARBOSA VENDRAMINI-COSTA D, FRANCO-BARRAZA J, et al. Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression[J]. Cancer Discov, 2021, 11(2): 446-479. DOI: 10.1158/2159-8290.CD-20-0775.
    [44]
    WU Y, TIAN Z, WEI H. Developmental and functional control of natural killer cells by cytokines[J]. Front Immunol, 2017, 8: 930. DOI: 10.3389/fimmu.2017.00930.
    [45]
    GARG B, GIRI B, MODI S, et al. NFκB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via up-regulation of CXCL12[J]. Gastroenterology, 2018, 155(3): 880-891. e8. DOI: 10.1053/j.gastro.2018.05.051.
    [46]
    DOMINGUEZ CX, MVLLER S, KEERTHIVASAN S, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy[J]. Cancer Discov, 2020, 10(2): 232-253. DOI: 10.1158/2159-8290.CD-19-0644.
    [47]
    WANG Y, GAO Z, DU X, et al. Co-inhibition of the TGF-β pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy[J]. Biomater Sci, 2020, 8(18): 5121-5132. DOI: 10.1039/d0bm00916d.
    [48]
    ELYADA E, BOLISETTY M, LAISE P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123. DOI: 10.1158/2159-8290.CD-19-0094.
    [49]
    TANG D, GAO J, WANG S, et al. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer[J]. Tumour Biol, 2015, 36(7): 5617-5626. DOI: 10.1007/s13277-015-3233-5.
    [50]
    OROZCO CA, MARTINEZ-BOSCH N, GUERRERO PE, et al. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk[J]. Proc Natl Acad Sci U S A, 2018, 115(16): e3769-e3778. DOI: 10.1073/pnas.1722434115.
    [51]
    BRUNETTO E, de MONTE L, BALZANO G, et al. The IL-1/IL-1 3receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer[J]. J Immunother Cancer, 2019, 7(1): 45. DOI: 10.1186/s40425-019-0521-4.
    [52]
    GORCHS L, FERNÁNDEZ MORO C, BANKHEAD P, et al. Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4+ and CD8+ T-Cells[J]. Front Immunol, 2019, 10: 847. DOI: 10.3389/fimmu.2019.00847.
    [53]
    KOIKAWA K, KIBE S, SUIZU F, et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy[J]. Cell, 2021, 184(18): 4753-4771. e27. DOI: 10.1016/j.cell.2021.07.020.
    [54]
    WEN Z, LIU Q, WU J, et al. Fibroblast activation protein α-positive pancreatic stellate cells promote the migration and invasion of pancreatic cancer by CXCL1-mediated Akt phosphorylation[J]. Ann Transl Med, 2019, 7(20): 532. DOI: 10.21037/atm.2019.09.164.
    [55]
    FEIG C, JONES JO, KRAMAN M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20212-20217. DOI: 10.1073/pnas.1320318110.
    [56]
    ZHANG Y, ERTL HC. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors[J]. Oncotarget, 2016, 7(17): 23282-23299. DOI: 10.18632/oncotarget.7818.
    [57]
    WANG Y, LIANG Y, XU H, et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response[J]. Cell Discov, 2021, 7(1): 36. DOI: 10.1038/s41421-021-00271-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (747) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return