中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 3
Mar.  2022
Turn off MathJax
Article Contents

Application of three-dimensional visualization in surgical operation for primary liver cancer

DOI: 10.3969/j.issn.1001-5256.2022.03.003
More Information
  • Corresponding author: LIU Jingfeng, drjingfeng@126.com(ORCID: 0000-0003-3499-5678)
  • Received Date: 2022-01-30
  • Accepted Date: 2022-01-31
  • Published Date: 2022-03-20
  • Surgical resection is currently the main method for the treatment of primary liver cancer. The appearance of new techniques, such as three-dimensional visualization, 3D printing, virtual reality, indocyanine green molecular fluorescence imaging, and hepatectomy with intraoperative navigation, has provided new methods for the preoperative diagnosis, surgical planning, and intraoperative navigation of primary liver cancer. Among these techniques, three-dimensional visualization shows incomparable advantages in the diagnosis of primary liver cancer, the selection of treatment regimen, preoperative planning, intraoperative navigation, and liver transplantation. This article summarizes the recent advances in the application of three-dimensional visualization in surgical operation for primary liver cancer.

     

  • loading
  • [1]
    YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: Trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
    [2]
    MCGUIRE S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO press, 2015[J]. Adv Nutr, 2016, 7(2): 418-419. DOI: 10.3945/an.116.012211.
    [3]
    SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [4]
    MARESCAUX J, CLÉMENT JM, TASSETTI V, et al. Virtual reality applied to hepatic surgery simulation: The next revolution[J]. Ann Surg, 1998, 228(5): 627-634. DOI: 10.1097/00000658-199811000-00001.
    [5]
    LE ROY B, OZGUR E, KOO B, et al. Augmented reality guidance in laparoscopic hepatectomy with deformable semi-automatic computed tomography alignment (with video)[J]. J Visc Surg, 2019, 156(3): 261-262. DOI: 10.1016/j.jviscsurg.2019.01.009.
    [6]
    FANG CH, ZHANG P, ZHOU WP, et al. Efficacy of three-dimensional visualization technology in the precision diagnosis and treatment for primary liver cancer: A retrospective multicenter study of 1 665 cases in China[J]. Chin J Surg, 2020, 58(5): 375-382. DOI: 10.3760/cma.j.cn112139-20200220-00105.

    方驰华, 张鹏, 周伟平, 等. 三维可视化技术用于1665例原发性肝癌精准诊治的多中心回顾性研究[J]. 中华外科杂志, 2020, 58(5): 375-382. DOI: 10.3760/cma.j.cn112139-20200220-00105.
    [7]
    XIANG N, FANG C, FAN Y, et al. Application of liver three-dimensional printing in hepatectomy for complex massive hepatocarcinoma with rare variations of portal vein: Preliminary experience[J]. Int J Clin Exp Med, 2015, 8(10): 18873-18878. http://europepmc.org/articles/PMC4694410
    [8]
    SHIRATA C, KOKUDO T, ARITA J, et al. Albumin-Indocyanine Green Evaluation (ALICE) grade combined with portal hypertension to predict post-hepatectomy liver failure[J]. Hepatol Res, 2019, 49(8): 942-949. DOI: 10.1111/hepr.13327.
    [9]
    CAUCHY F, FARGES O, VIBERT E, et al. Sensitizing surgeons to their outcome has no measurable short-term benefit[J]. Ann Surg, 2017, 266(5): 884-889. DOI: 10.1097/SLA.0000000000002403.
    [10]
    OKUDA Y, TAURA K, SEO S, et al. Usefulness of operative planning based on 3-dimensional CT cholangiography for biliary malignancies[J]. Surgery, 2015, 158(5): 1261-1271. DOI: 10.1016/j.surg.2015.04.021.
    [11]
    ZEIN NN, HANOUNEH IA, BISHOP PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation[J]. Liver Transpl, 2013, 19(12): 1304-1310. DOI: 10.1002/lt.23729.
    [12]
    IGAMI T, NAKAMURA Y, ODA M, et al. Application of three-dimensional print in minor hepatectomy following liver partition between anterior and posterior sectors[J]. ANZ J Surg, 2018, 88(9): 882-885. DOI: 10.1111/ans.14331.
    [13]
    HUBER T, HUETTL F, TRIPKE V, et al. Experiences with three-dimensional printing in complex liver surgery[J]. Ann Surg, 2021, 273(1): e26-e27. DOI: 10.1097/SLA.0000000000004348.
    [14]
    FAULKNER-JONES A, FYFE C, CORNELISSEN DJ, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D[J]. Biofabrication, 2015, 7(4): 044102. DOI: 10.1088/1758-5090/7/4/044102.
    [15]
    SHI L, LUO T, ZHANG L, et al. Preliminary use of HoloLens glasses in surgery of liver cancer[J]. J Cent South Univ(Med Sci), 2018, 43(5): 500-504. DOI: 10.11817/j.issn.1672-7347.2018.05.007.

    石磊, 罗涛, 张理, 等. HoloLens眼镜在肝癌切除手术中的初步应用[J]. 中南大学学报(医学版), 2018, 43(5): 500-504. DOI: 10.11817/j.issn.1672-7347.2018.05.007.
    [16]
    SAMPOGNA G, PUGLIESE R, ELLI M, et al. Routine clinical application of virtual reality in abdominal surgery[J]. Minim Invasive Ther Allied Technol, 2017, 26(3): 135-143. DOI: 10.1080/13645706.2016.1275016.
    [17]
    MISE Y, HASEGAWA K, SATOU S, et al. How has virtual hepatectomy changed the practice of liver surgery? Experience of 1194 virtual hepatectomy before liver resection and living donor liver transplantation[J]. Ann Surg, 2018, 268(1): 127-133. DOI: 10.1097/SLA.0000000000002213.
    [18]
    ZENG SL, ZHU W, FANG CH, et al. Three-dimensional visualization evaluation and VR study of giant liver cancer with blood vessels as the axis[J]. Chin J Gen Surg, 2019, 34(4): 323-327. DOI: 10.3760/cma.j.issn.1007-631X.2019.04.009.

    曾思略, 祝文, 方驰华, 等. 以血管为轴心的巨块型肝癌三维可视化评估及虚拟现实技术研究[J]. 中华普通外科杂志, 2019, 34(4): 323-327. DOI: 10.3760/cma.j.issn.1007-631X.2019.04.009.
    [19]
    TANG R, MA LF, RONG ZX, et al. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: A review of current methods[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(2): 101-112. DOI: 10.1016/j.hbpd.2018.02.002.
    [20]
    FIDA B, CUTOLO F, DI FRANCO G, et al. Augmented reality in open surgery[J]. Updates Surg, 2018, 70(3): 389-400. DOI: 10.1007/s13304-018-0567-8.
    [21]
    KENNGOTT HG, WAGNER M, GONDAN M, et al. Real-time image guidance in laparoscopic liver surgery: First clinical experience with a guidance system based on intraoperative CT imaging[J]. Surg Endosc, 2014, 28(3): 933-940. DOI: 10.1007/s00464-013-3249-0.
    [22]
    PHUTANE P, BUC E, POIROT K, et al. Preliminary trial of augmented reality performed on a laparoscopic left hepatectomy[J]. Surg Endosc, 2018, 32(1): 514-515. DOI: 10.1007/s00464-017-5733-4.
    [23]
    ZYGOMALAS A, KEHAGIAS I. Up-to-date intraoperative computer assisted solutions for liver surgery[J]. World J Gastrointest Surg, 2019, 11(1): 1-10. DOI: 10.4240/wjgs.v11.i1.1.
    [24]
    DILLEY J, HUGHES-HALLETT A, PRATT PJ, et al. Perfect registration leads to imperfect performance: A randomized trial of multimodal intraoperative image guidance[J]. Ann Surg, 2019, 269(2): 236-242. DOI: 10.1097/SLA.0000000000002793.
    [25]
    OKAMOTO T, ONDA S, MATSUMOTO M, et al. Utility of augmented reality system in hepatobiliary surgery[J]. J Hepatobiliary Pancreat Sci, 2013, 20(2): 249-253. DOI: 10.1007/s00534-012-0504-z.
    [26]
    TANG R, MA L, XIANG C, et al. Augmented reality navigation in open surgery for hilar cholangiocarcinoma resection with hemihepatectomy using video-based in situ three-dimensional anatomical modeling: A case report[J]. Medicine (Baltimore), 2017, 96(37): e8083. DOI: 10.1097/MD.0000000000008083.
    [27]
    BERTRAND LR, ABDALLAH M, ESPINEL Y, et al. A case series study of augmented reality in laparoscopic liver resection with a deformable preoperative model[J]. Surg Endosc, 2020, 34(12): 5642-5648. DOI: 10.1007/s00464-020-07815-x.
    [28]
    ZHANG W, ZHU W, YANG J, et al. Augmented reality navigation for stereoscopic laparoscopic anatomical hepatectomy of primary liver cancer: preliminary experience[J]. Front Oncol, 2021, 11: 663236. DOI: 10.3389/fonc.2021.663236.
    [29]
    BERTRAND LR, ABDALLAH M, ESPINEL Y, et al. A case series study of augmented reality in laparoscopic liver resection with a deformable preoperative model[J]. Surg Endosc, 2020, 34(12): 5642-5648. DOI: 10.1007/s00464-020-07815-x.
    [30]
    PESSAUX P, DIANA M, SOLER L, et al. Towards cybernetic surgery: Robotic and augmented reality-assisted liver segmentectomy[J]. Langenbecks Arch Surg, 2015, 400(3): 381-385. DOI: 10.1007/s00423-014-1256-9.
    [31]
    BARI H, WADHWANI S, DASARI B. Role of artificial intelligence in hepatobiliary and pancreatic surgery[J]. World J Gastrointest Surg, 2021, 13(1): 7-18. DOI: 10.4240/wjgs.v13.i1.7.
    [32]
    KOKUDO N, TAKEMURA N, ITO K, et al. The history of liver surgery: Achievements over the past 50 years[J]. Ann Gastroenterol Surg, 2020, 4(2): 109-117. DOI: 10.1002/ags3.12322.
    [33]
    ZHANG WQ, ZHUO JM, FANG CH. Indocyanine green fluorescence imaging for precise diagnosis and treatment of liver neoplasms: A Meta analysis[J]. Chin J Pract Surg, 2019, 39(7): 729-734. DOI: 10.19538/j.cjps.issn1005-2208.2019.07.22.

    张玮琪, 卓嘉明, 方驰华. ICG分子荧光影像技术用于肝脏肿瘤手术安全性和有效性Meta分析[J]. 中国实用外科杂志, 2019, 39(7): 729-734. DOI: 10.19538/j.cjps.issn1005-2208.2019.07.22.
    [34]
    ZHANG P, LUO H, ZHU W, et al. Real-time navigation for laparoscopic hepatectomy using image fusion of preoperative 3D surgical plan and intraoperative indocyanine green fluorescence imaging[J]. Surg Endosc, 2020, 34(8): 3449-3459. DOI: 10.1007/s00464-019-07121-1.
    [35]
    BAIOCCHI GL, DIANA M, BONI L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions[J]. World J Gastroenterol, 2018, 24(27): 2921-2930. DOI: 10.3748/wjg.v24.i27.2921.
    [36]
    WANG XY, GAO Q, ZHU XD, et al. Application of ICG fluorescence staining by laparoscopic ultrasound and 3D visualization guided portal branch puncture approach in anatomical segmentectomy[J]. Chin J Dig Surg, 2018, 17(5): 452-458. DOI: 10.3760/cma.j.issn.1673-9752.2018.05.008.

    王晓颖, 高强, 朱晓东, 等. 腹腔镜超声联合三维可视化技术引导门静脉穿刺吲哚菁绿荧光染色在精准解剖性肝段切除术中的应用[J]. 中华消化外科杂志, 2018, 17(5): 452-458. DOI: 10.3760/cma.j.issn.1673-9752.2018.05.008.
    [37]
    YANG J, TAO HS, CAI W, et al. Accuracy of actual resected liver volume in anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging[J]. J Surg Oncol, 2018, 118(7): 1081-1087. DOI: 10.1002/jso.25258.
    [38]
    LUO H, YIN D, ZHANG S, et al. Augmented reality navigation for liver resection with a stereoscopic laparoscope[J]. Comput Methods Programs Biomed, 2020, 187: 105099. DOI: 10.1016/j.cmpb.2019.105099.
    [39]
    LUO Y, ZHANG M, ZHOU T, et al. Application of three-dimensional visualization technique in pediatric living donor liver transplantation[J]. Chin J Surg, 2016, 54(9): 700-703. DOI: 10.3760/cma.j.issn.0529-5815.2016.09.010.

    罗毅, 张明, 周韬, 等. 三维可视化技术在儿童活体肝移植中的应用[J]. 中华外科杂志, 2016, 54(9): 700-703. DOI: 10.3760/cma.j.issn.0529-5815.2016.09.010.
    [40]
    WANG P, QUE W, ZHANG M, et al. Application of 3-dimensional printing in pediatric living donor liver transplantation: A single-center experience[J]. Liver Transpl, 2019, 25(6): 831-840. DOI: 10.1002/lt.25435.
    [41]
    PANARO F, BENEDETTI E, PINETON DE CHAMBRUN G, et al. Indocyanine green fluorescence angiography during liver and pancreas transplantation: A tool to integrate perfusion statement's evaluation[J]. Hepatobiliary Surg Nutr, 2018, 7(3): 161-166. DOI: 10.21037/hbsn.2017.07.02.
    [42]
    FIGUEROA R, GOLSE N, ALVAREZ FA, et al. Indocyanine green fluorescence imaging to evaluate graft perfusion during liver transplantation[J]. HPB (Oxford), 2019, 21(4): 387-392. DOI: 10.1016/j.hpb.2018.09.001.
    [43]
    HERLAMBANG N, LIAO H, MATSUMIYA K, et al. Interactive autotereoscopic medical image visualization system using GPU-accelerated integral videography direct volume rendering[J]. Int J Comp Assist Radiol Surg, 2008, 5128: 349-358. http://ci.nii.ac.jp/naid/10029030609
    [44]
    KONG SH, HAOUCHINE N, SOARES R, et al. Robust augmented reality registration method for localization of solid organs' tumors using CT-derived virtual biomechanical model and fluorescent fiducials[J]. Surg Endosc, 2017, 31(7): 2863-2871. DOI: 10.1007/s00464-016-5297-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (677) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return