中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 37 Issue 11
Nov.  2021
Turn off MathJax
Article Contents

Value of circular RNA in the diagnosis and treatment of nonalcoholic fatty liver disease

DOI: 10.3969/j.issn.1001-5256.2021.11.043
Research funding:

National Natural Science Foundation of China (81703879);

Shanghai Municipal Commission of Health and Family Planning General Project for Clinical Research of Health Industry (201840377);

Shanghai Municipal Commission of Health and Family Planning General Project for Clinical Research of Health Industry (201940449);

Putuo District of Shanghai Science And Technology Commission Research Project (ptkwws201813);

Reserve excellent TCM talents project of Shanghai University of traditional Chinese Medicine (20D-RC-02)

  • Received Date: 2021-03-30
  • Accepted Date: 2021-04-28
  • Published Date: 2021-11-20
  • The prevalence rate of nonalcoholic fatty liver disease (NAFLD) is increasing year by year and it has become one of the most common chronic liver diseases in the world. Studies have shown that circular RNA (circRNA) is closely associated with NAFLD and is considered a potential diagnostic biomarker and therapeutic target for NAFLD. This article summarizes the regulatory role of circRNA in the pathogenesis of NAFLD and its value in diagnosis and treatment and points out that circRNA plays an important role in the development and progression of NAFLD and may have important clinical significance in the diagnosis and treatment of NAFLD.

     

  • loading
  • [1]
    JARVIS H, CRAIG D, BARKER R, et al. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies[J]. PLoS Med, 2020, 17(4): e1003100. DOI: 10.1371/journal.pmed.1003100.
    [2]
    KIAPIDOU S, LIAVA C, KALOGIROU M, et al. Chronic kidney disease in patients with non-alcoholic fatty liver disease: What the Hepatologist should know?[J]. Ann Hepatol, 2020, 19(2): 134-144. DOI: 10.1016/j.aohep.2019.07.013.
    [3]
    CAO Y, XIE W. Research in the pathogenesis of nonalcoholic fatty liver disease[J]. Chin Clin Dr, 2020, 48(1): 4-6. DOI: 10.3969/j.issn.2095-8552.2020.01.002.

    曹颖, 谢雯. 非酒精性脂肪性肝病发病机制研究[J]. 中国临床医生杂志, 2020, 48(1): 4-6. DOI: 10.3969/j.issn.2095-8552.2020.01.002.
    [4]
    YUAN X, DIAO J, DU A, et al. Circular RNA expression profiles and features in NAFLD mice: A study using RNA-seq data[J]. J Transl Med, 2020, 18(1): 476. DOI: 10.1186/s12967-020-02637-w.
    [5]
    KHALIFA O, ERRAFⅡ K, AL-AKL NS, et al. Noncoding RNAs in nonalcoholic fatty liver disease: Potential diagnosis and prognosis biomarkers[J]. Dis Markers, 2020, 2020: 8822859. DOI: 10.1155/2020/8822859.
    [6]
    BESSONE F, RAZORI MV, ROMA MG. Molecular pathways of nonalcoholic fatty liver disease development and progression[J]. Cell Mol Life Sci, 2019, 76(1): 99-128. DOI: 10.1007/s00018-018-2947-0.
    [7]
    DAY CP, JAMES OF. Steatohepatitis: A tale of two "hits"?[J]. Gastroenterology, 1998, 114(4): 842-845. DOI: 10.1016/s0016-5085(98)70599-2.
    [8]
    FANG YL, CHEN H, WANG CL, et al. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From "two hit theory" to "multiple hit model"[J]. World J Gastroenterol, 2018, 24(27): 2974-2983. DOI: 10.3748/wjg.v24.i27.2974.
    [9]
    ZHOU M, XIAO MS, LI Z, et al. New progresses of circular RNA biology: From nuclear export to degradation[J]. RNA Biol, 2020. DOI: 10.1080/15476286.2020.1853977.[Onlineaheadofprint]
    [10]
    HANSEN TB, JENSEN TI, CLAUSEN BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. DOI: 10.1038/nature11993.
    [11]
    KRISTENSEN LS, ANDERSEN MS, STAGSTED L, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. DOI: 10.1038/s41576-019-0158-7.
    [12]
    CHIEN Y, TSAI PH, LAI YH, et al. CircularRNA as novel biomarkers in liver diseases[J]. J Chin Med Assoc, 2020, 83(1): 15-17. DOI: 10.1097/JCMA.0000000000000230.
    [13]
    ZHAO Q, LIU J, DENG H, et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output[J]. Cell, 2020, 183(1): 76-93. e22. DOI: 10.1016/j.cell.2020.08.009.
    [14]
    RIAZ F, LI D. Non-coding RNA associated competitive endogenous RNA regulatory network: Novel therapeutic approach in liver fibrosis[J]. Curr Gene Ther, 2019, 19(5): 305-317. DOI: 10.2174/1566523219666191107113046.
    [15]
    YAO J, DAI Q, LIU Z, et al. Circular RNAs in organ fibrosis[J]. Adv Exp Med Biol, 2018, 1087: 259-273. DOI: 10.1007/978-981-13-1426-1_21.
    [16]
    XIONG DD, DANG YW, LIN P, et al. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma[J]. J Transl Med, 2018, 16(1): 220. DOI: 10.1186/s12967-018-1593-5.
    [17]
    JIANG YZ, NIE HM, WANG R. Research advances in the pathogenesis of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2019, 35(11): 2588-2591. DOI: 10.3969/j.issn.1001-5256.2019.11.044.

    姜煜资, 聂红明, 汪蓉. 非酒精性脂肪性肝病的发病机制[J]. 临床肝胆病杂志, 2019, 35(11): 2588-2591. DOI: 10.3969/j.issn.1001-5256.2019.11.044.
    [18]
    GJORGJIEVA M, SOBOLEWSKI C, DOLICKA D, et al. miRNAs and NAFLD: From pathophysiology to therapy[J]. Gut, 2019, 68(11): 2065-2079. DOI: 10.1136/gutjnl-2018-318146.
    [19]
    CAI H, JIANG Z, YANG X, et al. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1[J]. Endocr J, 2020, 67(4): 397-408. DOI: 10.1507/endocrj.EJ19-0271.
    [20]
    JÄGER S, WAHL S, KRÖGER J, et al. Genetic variants including markers from the exome chip and metabolite traits of type 2 diabetes[J]. Sci Rep, 2017, 7(1): 6037. DOI: 10.1038/s41598-017-06158-3.
    [21]
    YAN L, CHEN YG. One ring to rule them all: Mitochondrial circular RNAs control mitochondrial function[J]. Cell, 2020, 183(1): 11-13. DOI: 10.1016/j.cell.2020.09.028.
    [22]
    BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
    [23]
    GUO XY, CHEN JN, SUN F, et al. circRNA_0046367 prevents hepatoxicity of lipid peroxidation: An inhibitory role against hepatic steatosis[J]. Oxid Med Cell Longev, 2017, 2017: 3960197. DOI: 10.1155/2017/3960197.
    [24]
    GUO XY, SUN F, CHEN JN, et al. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling[J]. World J Gastroenterol, 2018, 24(3): 323-337. DOI: 10.3748/wjg.v24.i3.323.
    [25]
    GUO XY, HE CX, WANG YQ, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis[J]. Biomed Res Int, 2017, 2017: 5936171. DOI: 10.1155/2017/5936171.
    [26]
    LI P, SHAN K, LIU Y, et al. CircScd1 promotes fatty liver disease via the janus kinase 2/signal transducer and activator of transcription 5 pathway[J]. Dig Dis Sci, 2019, 64(1): 113-122. DOI: 10.1007/s10620-018-5290-2.
    [27]
    XIE C, CHEN Z, ZHANG C, et al. Dihydromyricetin ameliorates oleic acid-induced lipid accumulation in L02 and HepG2 cells by inhibiting lipogenesis and oxidative stress[J]. Life Sci, 2016, 157: 131-139. DOI: 10.1016/j.lfs.2016.06.001.
    [28]
    BARNWAL B, KARLBERG H, MIRAZIMI A, et al. The non-structural protein of crimean-congo hemorrhagic fever virus disrupts the mitochondrial membrane potential and induces apoptosis[J]. J Biol Chem, 2016, 291(2): 582-592. DOI: 10.1074/jbc.M115.667436.
    [29]
    ZHOU Y, LV X, QU H, et al. Differential expression of circular RNAs in hepatic tissue in a model of liver fibrosis and functional analysis of their target genes[J]. Hepatol Res, 2019, 49(3): 324-334. DOI: 10.1111/hepr.13284.
    [30]
    BRIL F, ORTIZ-LOPEZ C, LOMONACO R, et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients[J]. Liver Int, 2015, 35(9): 2139-2146. DOI: 10.1111/liv.12840.
    [31]
    BEDOSSA P, FLIP Pathology Consortium. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease[J]. Hepatology, 2014, 60(2): 565-575. DOI: 10.1002/hep.27173.
    [32]
    SCHULTE C, BARWARI T, JOSHI A, et al. Comparative analysis of circulating noncoding RNAs versus protein biomarkers in the detection of myocardial injury[J]. Circ Res, 2019, 125(3): 328-340. DOI: 10.1161/CIRCRESAHA.119.314937.
    [33]
    CHEN RX, CHEN X, XIA LP, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun, 2019, 10(1): 4695. DOI: 10.1038/s41467-019-12651-2.
    [34]
    EKSTEDT M, HAGSTRÖM H, NASR P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up[J]. Hepatology, 2015, 61(5): 1547-1554. DOI: 10.1002/hep.27368.
    [35]
    ND AM. Non-alcoholic fatty liver disease, an overview[J]. Integr Med (Encinitas), 2019, 18(2): 42-49.
    [36]
    JIN X, FENG CY, XIANG Z, et al. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis[J]. Oncotarget, 2016, 7(41): 66455-66467. DOI: 10.18632/oncotarget.12186.
    [37]
    SULAIMAN SA, MUHSIN N, JAMAL R. Regulatory non-coding RNAs network in non-alcoholic fatty liver disease[J]. Front Physiol, 2019, 10: 279. DOI: 10.3389/fphys.2019.00279.
    [38]
    TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
    [39]
    CHEN X, LI HD, BU FT, et al. Circular RNA circFBXW4 suppresses hepatic fibrosis via targeting the miR-18b-3p/FBXW7 axis[J]. Theranostics, 2020, 10(11): 4851-4870. DOI: 10.7150/thno.42423.
    [40]
    CHEN Y, YUAN B, WU Z, et al. Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation[J]. Gene, 2017, 629: 35-42. DOI: 10.1016/j.gene.2017.07.078.
    [41]
    LI Y, ZHENG Q, BAO C, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8): 981-984. DOI: 10.1038/cr.2015.82.
    [42]
    SHANG X, LI G, LIU H, et al. Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development[J]. Medicine (Baltimore), 2016, 95(22): e3811. DOI: 10.1097/MD.0000000000003811.
    [43]
    ZHU Q, LU G, LUO Z, et al. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/β-catenin axis[J]. Biochem Biophys Res Commun, 2018, 497(2): 626-632. DOI: 10.1016/j.bbrc.2018.02.119.
    [44]
    SHAN K, LIU C, LIU BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629-1642. DOI: 10.1161/CIRCULATIONAHA.117.029004.
    [45]
    LIU Y, LIU H, LI Y, et al. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis[J]. Theranostics, 2020, 10(10): 4705-4719. DOI: 10.7150/thno.42417.
    [46]
    WANG T, PAN W, HU J, et al. Circular RNAs in metabolic diseases[J]. Adv Exp Med Biol, 2018, 1087: 275-285. DOI: 10.1007/978-981-13-1426-1_22.
    [47]
    GUO J, ZHOU Y, CHENG Y, et al. Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice[J]. Cell Physiol Biochem, 2018, 45(4): 1487-1505. DOI: 10.1159/000487575.
    [48]
    AIERKEN Y, KONG LX, LI B, et al. Liver fibrosis is a major risk factor for liver regeneration: A comparison between healthy and fibrotic liver[J]. Medicine (Baltimore), 2020, 99(22): e20003. DOI: 10.1097/MD.0000000000020003.
    [49]
    LI L, GUO J, CHEN Y, et al. Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration[J]. BMC Genomics, 2017, 18(1): 80. DOI: 10.1186/s12864-016-3476-6.
    [50]
    XU S, ZHOU LY, WANG K. Circular RNA and its potential as a disease marker[J]. Chin J Biochem Mol Biol, 2018, 34(2): 117-128. DOI: 10.13865/j.cnki.cjbmb.2018.02.01.

    许胜, 周露玙, 王昆. 环状RNA及其作为疾病标志物的潜能[J]. 中国生物化学与分子生物学报, 2018, 34(2): 117-128. DOI: 10.13865/j.cnki.cjbmb.2018.02.01.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (473) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return