中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 37 Issue 11
Nov.  2021
Turn off MathJax
Article Contents

Impact of nonalcoholic fatty liver disease on intestinal immune cells

DOI: 10.3969/j.issn.1001-5256.2021.11.039
Research funding:

National Natural Science Foundation of China (81500402);

National Natural Science Foundation of Liaoning, China (20180530055)

  • Received Date: 2021-03-24
  • Accepted Date: 2021-04-26
  • Published Date: 2021-11-20
  • Nonalcoholic fatty liver disease (NAFLD) interacts with the intestinal immune system due to enterohepatic circulation and immune cell recruitment and recirculation. Intestinal immune imbalance promotes liver inflammation and fibrosis in the process of NAFLD, and meanwhile, NAFLD can cause disorders in the number and function of immune cells in the liver and intestinal tract. This article mainly elaborates on the impact of NAFLD on intestinal immune cells and briefly summarizes the new treatment methods for NAFLD targeting at intestinal immune cells, in order to provide a new understanding of the pathogenesis and treatment of NAFLD.

     

  • loading
  • [1]
    COTTER TG, RINELLA M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology, 2020, 158(7): 1851-1864. DOI: 10.1053/j.gastro.2020.01.052.
    [2]
    ZHOU J, ZHOU F, WANG W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71(5): 1851-1864. DOI: 10.1002/hep.31150.
    [3]
    ZENG Y, LUO M, PAN L, et al. Vitamin D signaling maintains intestinal innate immunity and gut microbiota: Potential intervention for metabolic syndrome and NAFLD[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): g542-g553. DOI: 10.1152/ajpgi.00286.2019.
    [4]
    LUCI C, VIEIRA E, PERCHET T, et al. Natural killer cells and type 1 innate lymphoid cells are new actors in non-alcoholic fatty liver disease[J]. Front Immunol, 2019, 10: 1192. DOI: 10.3389/fimmu.2019.01192.
    [5]
    SU L, WU Z, CHI Y, et al. Mesenteric lymph node CD4+ T lymphocytes migrate to liver and contribute to non-alcoholic fatty liver disease[J]. Cell Immunol, 2019, 337: 33-41. DOI: 10.1016/j.cellimm.2019.01.005.
    [6]
    GROSS-VERED M, TRZEBANSKI S, SHEMER A, et al. Defining murine monocyte differentiation into colonic and ileal macrophages[J]. Elife, 2020, 9: e49998. DOI: 10.7554/eLife.49998.
    [7]
    MAN AL, GICHEVA N, REGOLI M, et al. CX3CR1+ Cell-mediated salmonella exclusion protects the intestinal mucosa during the initial stage of infection[J]. J Immunol, 2017, 198(1): 335-343. DOI: 10.4049/jimmunol.1502559.
    [8]
    TSUJIMOTO T, KAWARATANI H, KITAZAWA T, et al. Innate immune reactivity of the ileum-liver axis in nonalcoholic steatohepatitis[J]. Dig Dis Sci, 2012, 57(5): 1144-1151. DOI: 10.1007/s10620-012-2073-z.
    [9]
    IMAJO K, FUJITA K, YONEDA M, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling[J]. Cell Metab, 2012, 16(1): 44-54. DOI: 10.1016/j.cmet.2012.05.012.
    [10]
    ISAACS-TEN A, ECHEANDIA M, MORENO-GONZALEZ M, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability in mice[J]. Hepatology, 2020, 72(6): 2090-2108. DOI: 10.1002/hep.31228.
    [11]
    SCOTT NA, ANDRUSAITE A, ANDERSEN P, et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis[J]. Sci Transl Med, 2018, 10(464). DOI: 10.1126/scitranslmed.aao4755.
    [12]
    SCHULTHESS J, PANDEY S, CAPITANI M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J]. Immunity, 2019, 50(2): 432-445. e7. DOI: 10.1016/j.immuni.2018.12.018.
    [13]
    DENG M, QU F, CHEN L, et al. SCFA alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol, 2020, 245(3): 425-437. DOI: 10.1530/JOE-20-0018.
    [14]
    HUA Y, YANG Y, SUN S, et al. Gut homeostasis and regulatory T cell induction depend on molecular chaperone gp96 in CD11c+ cells[J]. Sci Rep, 2017, 7(1): 2171. DOI: 10.1038/s41598-017-02415-7.
    [15]
    STEIMLE A, FRICK JS. Molecular mechanisms of induction of tolerant and tolerogenic intestinal dendritic cells in mice[J]. J Immunol Res, 2016, 2016: 1958650. DOI: 10.1155/2016/1958650.
    [16]
    TACKE F, YONEYAMA H. From NAFLD to NASH to fibrosis to HCC: Role of dendritic cell populations in the liver[J]. Hepatology, 2013, 58(2): 494-496. DOI: 10.1002/hep.26405.
    [17]
    ALMEDA-VALDES P, AGUILAR OLIVOS NE, BARRANCO-FRAGOSO B, et al. The role of dendritic cells in fibrosis progression in nonalcoholic fatty liver disease[J]. Biomed Res Int, 2015, 2015: 768071. DOI: 10.1155/2015/768071.
    [18]
    HEIER EC, MEIER A, JULICH-HAERTEL H, et al. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis[J]. J Hepatol, 2017, 66(6): 1241-1250. DOI: 10.1016/j.jhep.2017.01.008.
    [19]
    HENNING JR, GRAFFEO CS, REHMAN A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice[J]. Hepatology, 2013, 58(2): 589-602. DOI: 10.1002/hep.26267.
    [20]
    FANG JH, YU W, ZHOU G, et al. Study on the correlation between small intestinal dendritic cells and non-alcoholic fatty liver disease in mice[J]. Chin J Hepatol, 2019, 27(9): 698-703. DOI: 10.3760/cma.j.issn.1007-3418.2019.09.008.

    方家恒, 喻玮, 周刚, 等. 小鼠小肠树突状细胞与非酒精性脂肪性肝病相关性的研究[J]. 中华肝脏病杂志, 2019, 27(9): 698-703. DOI: 10.3760/cma.j.issn.1007-3418.2019.09.008.
    [21]
    MAO JW, TANG HY, ZHAO T, et al. Intestinal mucosal barrier dysfunction participates in the progress of nonalcoholic fatty liver disease[J]. Int J Clin Exp Pathol, 2015, 8(4): 3648-3658.
    [22]
    FUNG TC, BESSMAN NJ, HEPWORTH MR, et al. Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism[J]. Immunity, 2016, 44(3): 634-646. DOI: 10.1016/j.immuni.2016.02.019.
    [23]
    MILLARD AL, MERTES PM, ITTELET D, et al. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages[J]. Clin Exp Immunol, 2002, 130(2): 245-255. DOI: 10.1046/j.0009-9104.2002.01977.x.
    [24]
    LIU L, LI L, MIN J, et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells[J]. Cell Immunol, 2012, 277(1-2): 66-73. DOI: 10.1016/j.cellimm.2012.05.011.
    [25]
    VAVASSORI P, MENCARELLI A, RENGA B, et al. The bile acid receptor FXR is a modulator of intestinal innate immunity[J]. J Immunol, 2009, 183(10): 6251-6261. DOI: 10.4049/jimmunol.0803978.
    [26]
    TOSELLO-TRAMPONT AC, KRUEGER P, NARAYANAN S, et al. NKp46(+) natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice[J]. Hepatology, 2016, 63(3): 799-812. DOI: 10.1002/hep.28389.
    [27]
    FAN Y, ZHANG W, WEI H, et al. Hepatic NK cells attenuate fibrosis progression of non-alcoholic steatohepatitis in dependent of CXCL10-mediated recruitment[J]. Liver Int, 2020, 40(3): 598-608. DOI: 10.1111/liv.14307.
    [28]
    REYNDERS A, YESSAAD N, VU MANH TP, et al. Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt- lymphoid cells[J]. EMBO J, 2011, 30(14): 2934-2947. DOI: 10.1038/emboj.2011.201.
    [29]
    FORKEL M, BERGLIN L, KEKÄLÄINEN E, et al. Composition and functionality of the intrahepatic innate lymphoid cell-compartment in human nonfibrotic and fibrotic livers[J]. Eur J Immunol, 2017, 47(8): 1280-1294. DOI: 10.1002/eji.201646890.
    [30]
    WANG S, LI J, WU S, et al. Type 3 innate lymphoid cell: A new player in liver fibrosis progression[J]. Clin Sci (Lond), 2018, 132(24): 2565-2582. DOI: 10.1042/CS20180482.
    [31]
    WANG Q, LI D, ZHU J, et al. Perforin acts as an immune regulator to prevent the progression of NAFLD[J]. Front Immunol, 2020, 11: 846. DOI: 10.3389/fimmu.2020.00846.
    [32]
    SU L, WANG JH, CONG X, et al. Intestinal immune barrier integrity in rats with nonalcoholic hepatic steatosis and steatohepatitis[J]. Chin Med J (Engl), 2012, 125(2): 306-311.
    [33]
    SU L, WU Z, CHI Y, et al. Mesenteric lymph node CD4+ T lymphocytes migrate to liver and contribute to non-alcoholic fatty liver disease[J]. Cell Immunol, 2019, 337: 33-41. DOI: 10.1016/j.cellimm.2019.01.005.
    [34]
    JIANG W, WU N, WANG X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease[J]. Sci Rep, 2015, 5: 8096. DOI: 10.1038/srep08096.
    [35]
    ARPAIA N, CAMPBELL C, FAN X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455. DOI: 10.1038/nature12726.
    [36]
    CARPINO G, DEL BEN M, PASTORI D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD[J]. Hepatology, 2020, 72(2): 470-485. DOI: 10.1002/hep.31056.
    [37]
    WANG X, JI D, ZHU B, et al. Contribution of endotoxin to Th17 bias in patients with non-alcoholic steatohepatitis[J]. Microb Pathog, 2020, 142: 104009. DOI: 10.1016/j.micpath.2020.104009.
    [38]
    HU Y, ZHANG H, LI J, et al. Gut-derived lymphocyte recruitment to liver and induce liver injury in non-alcoholic fatty liver disease mouse model[J]. J Gastroenterol Hepatol, 2016, 31(3): 676-684. DOI: 10.1111/jgh.13183.
    [39]
    PABST O, SLACK E. IgA and the intestinal microbiota: The importance of being specific[J]. Mucosal Immunol, 2020, 13(1): 12-21. DOI: 10.1038/s41385-019-0227-4.
    [40]
    BRUZZÌ S, SUTTI S, GIUDICI G, et al. B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD)[J]. Free Radic Biol Med, 2018, 124: 249-259. DOI: 10.1016/j.freeradbiomed.2018.06.015.
    [41]
    MORO-SIBILOT L, BLANC P, TAILLARDET M, et al. Mouse and human liver contain immunoglobulin a-secreting cells originating from peyer's patches and directed against intestinal antigens[J]. Gastroenterology, 2016, 151(2): 311-323. DOI: 10.1053/j.gastro.2016.04.014.
    [42]
    LI S, WU WC, HE CY, et al. Change of intestinal mucosa barrier function in the progress of non-alcoholic steatohepatitis in rats[J]. World J Gastroenterol, 2008, 14(20): 3254-3258. DOI: 10.3748/wjg.14.3254.
    [43]
    MATSUMOTO K, ICHIMURA M, TSUNEYAMA K, et al. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis[J]. PLoS One, 2017, 12(6): e0175406. DOI: 10.1371/journal.pone.0175406.
    [44]
    MCPHERSON S, HENDERSON E, BURT AD, et al. Serum immunoglobulin levels predict fibrosis in patients with non-alcoholic fatty liver disease[J]. J Hepatol, 2014, 60(5): 1055-1062. DOI: 10.1016/j.jhep.2014.01.010.
    [45]
    CATANZARO JR, STRAUSS JD, BIELECKA A, et al. IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM[J]. Sci Rep, 2019, 9(1): 13574. DOI: 10.1038/s41598-019-49923-2.
    [46]
    MIRPURI J, RAETZ M, STURGE CR, et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota[J]. Gut Microbes, 2014, 5(1): 28-39. DOI: 10.4161/gmic.26489.
    [47]
    MOON C, BALDRIDGE MT, WALLACE MA, et al. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation[J]. Nature, 2015, 521(7550): 90-93. DOI: 10.1038/nature14139.
    [48]
    MICHAIL S, LIN M, FREY MR, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease[J]. FEMS Microbiol Ecol, 2015, 91(2): 1-9. DOI: 10.1093/femsec/fiu002.
    [49]
    ISOBE J, MAEDA S, OBATA Y, et al. Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon[J]. Int Immunol, 2020, 32(4): 243-258. DOI: 10.1093/intimm/dxz078.
    [50]
    KIM M, QIE Y, PARK J, et al. Gut Microbial metabolites fuel host antibody responses[J]. Cell Host Microbe, 2016, 20(2): 202-214. DOI: 10.1016/j.chom.2016.07.001.
    [51]
    WEINER HL, DA CUNHA AP, QUINTANA F, et al. Oral tolerance[J]. Immunol Rev, 2011, 241(1): 241-259. DOI: 10.1111/j.1600-065X.2011.01017.x.
    [52]
    LALAZAR G, MIZRAHI M, TURGEMAN I, et al. Oral administration of OKT3 MAb to patients with NASH, promotes regulatory T-cell induction, and alleviates insulin resistance: Results of a phase Ⅱa blinded placebo-controlled trial[J]. J Clin Immunol, 2015, 35(4): 399-407. DOI: 10.1007/s10875-015-0160-6.
    [53]
    ILAN Y, GINGIS-VELITSKI S, BEN YA'ACO A, et al. A plant cell-expressed recombinant anti-TNF fusion protein is biologically active in the gut and alleviates immune-mediated hepatitis and colitis[J]. Immunobiology, 2017, 222(3): 544-551. DOI: 10.1016/j.imbio.2016.11.001.
    [54]
    ILAN Y, BEN YA'ACOV A, SHABBAT Y, et al. Oral administration of a non-absorbable plant cell-expressed recombinant anti-TNF fusion protein induces immunomodulatory effects and alleviates nonalcoholic steatohepatitis[J]. World J Gastroenterol, 2016, 22(39): 8760-8769. DOI: 10.3748/wjg.v22.i39.8760.
    [55]
    ALMON E, KHOURY T, DRORI A, et al. An oral administration of a recombinant anti-TNF fusion protein is biologically active in the gut promoting regulatory T cells: Results of a phase Ⅰ clinical trial using a novel oral anti-TNF alpha-based therapy[J]. J Immunol Methods, 2017, 446: 21-29. DOI: 10.1016/j.jim.2017.03.023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (411) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return