[1] |
National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5) : 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
|
[2] |
LIN SC, FENG G, LIU JL, et al. From nonalcoholic fatty liver disease to metabolic fatty liver disease: An analysis based on disease heterogeneity[J]. J Clin Hepatol, 2020, 36(11): 2597-2600. DOI: 10.3969/j.issn.1001-5256.2020.11.045.
林思岑, 冯巩, 刘军林, 等. 从非酒精性脂肪性肝病到代谢性脂肪性肝病—基于疾病异质性角度的分析[J]. 临床肝胆病杂志, 2020, 36(11): 2597-2600. DOI: 10.3969/j.issn.1001-5256.2020.11.045.
|
[3] |
KHERA AV, KATHIRESAN S. Genetics of coronary artery disease: Discovery, biology and clinical translation[J]. Nat Rev Genet, 2017, 18(6): 331-344. DOI: 10.1038/nrg.2016.160.
|
[4] |
PYXARAS SA, WIJNS W, REIBER J, et al. Invasive assessment of coronary artery disease[J]. J Nucl Cardiol, 2018, 25(3): 860-871. DOI: 10.1007/s12350-017-1050-5.
|
[5] |
LABAZI H, TRASK AJ. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome[J]. Pharmacol Res, 2017, 123: 114-121. DOI: 10.1016/j.phrs.2017.07.004.
|
[6] |
MUSSO G, GAMBINO R, CASSADER M, et al. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity[J]. Ann Med, 2011, 43(8): 617-649. DOI: 10.3109/07853890.2010.518623.
|
[7] |
ANSTEE QM, TARGHER G, DAY CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(6): 330-344. DOI: 10.1038/nrgastro.2013.41.
|
[8] |
YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
|
[9] |
VALENTI L, AL-SERRI A, DALY AK, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2010, 51(4): 1209-1217. DOI: 10.1002/hep.23622.
|
[10] |
ANSTEE QM, DAY CP. The genetics of nonalcoholic fatty liver disease: Spotlight on PNPLA3 and TM6SF2[J]. Semin Liver Dis, 2015, 35(3): 270-290. DOI: 10.1055/s-0035-1562947.
|
[11] |
KOSTER JC, PERMUTT MA, NICHOLS CG. Diabetes and insulin secretion: The ATP-sensitive K+ channel (K ATP) connection[J]. Diabetes, 2005, 54(11): 3065-3072. DOI: 10.2337/diabetes.54.11.3065.
|
[12] |
ABDELHAMID I, LASRAM K, MEILOUD G, et al. E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population[J]. Prim Care Diabetes, 2014, 8(2): 171-175. DOI: 10.1016/j.pcd.2013.10.006.
|
[13] |
QIU L, NA R, XU R, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes[J]. PLoS One, 2014, 9(4): e93961. DOI: 10.1371/journal.pone.0093961.
|
[14] |
SHIMOMURA K. The K(ATP) channel and neonatal diabetes[J]. Endocr J, 2009, 56(2): 165-175. DOI: 10.1507/endocrj.k08e-160.
|
[15] |
BONNEFOND A, PHILIPPE J, DURAND E, et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene[J]. PLoS One, 2012, 7(6): e37423. DOI: 10.1371/journal.pone.0037423.
|
[16] |
MARTHINET E, BLOC A, OKA Y, et al. Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function[J]. J Clin Endocrinol Metab, 2005, 90(9): 5401-5406. DOI: 10.1210/jc.2005-0202.
|
[17] |
FEDELE F, MANCONE M, CHILIAN WM, et al. Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease[J]. Basic Res Cardiol, 2013, 108(6): 387. DOI: 10.1007/s00395-013-0387-4.
|
[18] |
CENSIN JC, PETERS S, BOVIJN J, et al. Causal relationships between obesity and the leading causes of death in women and men[J]. PLoS Genet, 2019, 15(10): e1008405. DOI: 10.1371/journal.pgen.1008405.
|
[19] |
BYRNE CD, TARGHER G. NAFLD: A multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl): s47-s64. DOI: 10.1016/j.jhep.2014.12.012.
|
[20] |
GAGGINI M, MORELLI M, BUZZIGOLI E, et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease[J]. Nutrients, 2013, 5(5): 1544-1560. DOI: 10.3390/nu5051544.
|
[21] |
National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association. Guidelines of diagnosis and treatment for nonalcoholic fatty liver disease: A 2010 update[J]. J Clin Hepatol, 2010, 26(2): 120-124. http://lcgdbzz.org/cn/article/doi/1001-5256%20(2010)%2002-0120-05
中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版)[J]. 临床肝胆病杂志, 2010, 26(2): 120-124. http://lcgdbzz.org/cn/article/doi/1001-5256%20(2010)%2002-0120-05
|
[22] |
HAO P. The Study of single nucleotide polymorphisms(SNPS) of KCNJ11 gene associated with type 2 diabetes of Chinese Koreans in Yanbian area[D]. Yanji: Yanbian University, 2012.
郝萍. 延边地区朝鲜族KCNJ11基因单核苷酸多态性与2型糖尿病的相关性研究[D]. 延吉: 延边大学, 2012.
|
[23] |
KHAN IA, VATTAM KK, JAHAN P, et al. Correlation between KCNQ1 and KCNJ11 gene polymorphisms and type 2 and post-transplant diabetes mellitus in the Asian Indian population[J]. Genes Dis, 2015, 2(3): 276-282. DOI: 10.1016/j.gendis.2015.02.009.
|
[24] |
GALLARDO-BLANCO HL, VILLARREAL-PEREZ JZ, CERDA-FLORES RM, et al. Genetic variants in KCNJ11, TCF7L2 and HNF4A are associated with type 2 diabetes, BMI and dyslipidemia in families of Northeastern Mexico: A pilot study[J]. Exp Ther Med, 2017, 13(2): 523-529. DOI: 10.3892/etm.2016.3990.
|
[25] |
KOO BK, CHO YM, PARK BL, et al. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with type 2 diabetes and hypertension in the Korean population[J]. Diabet Med, 2007, 24(2): 178-186. DOI: 10.1111/j.1464-5491.2006.02050.x.
|
[26] |
SAKAMOTO Y, INOUE H, KESHAVARZ P, et al. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population[J]. J Hum Genet, 2007, 52(10): 781-793. DOI: 10.1007/s10038-007-0190-x.
|
[27] |
ZHANCHENG W, WENHUI J, YUN J, et al. The dominant models of KCNJ11 E23K and KCNMB1 E65K are associated with essential hypertension (EH) in Asian: Evidence from a meta-analysis[J]. Medicine (Baltimore), 2019, 98(23): e15828. DOI: 10.1097/MD.0000000000015828.
|
[28] |
KANE GC, BEHFAR A, DYER RB, et al. KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension[J]. Hum Mol Genet, 2006, 15(15): 2285-2297. DOI: 10.1093/hmg/ddl154.
|
[29] |
ZHANG B, NOVITSKAYA T, WHEELER DG, et al. KCNJ11 ablation is associated with increased nitro-oxidative stress during ischemia-reperfusion injury: Implications for human ischemic cardiomyopathy[J]. Circ Heart Fail, 2017, 10(2): e003523. DOI: 10.1161/CIRCHEARTFAILURE.116.003523.
|
[30] |
WEBER C, NOELS H. Atherosclerosis: Current pathogenesis and therapeutic options[J]. Nat Med, 2011, 17(11): 1410-1422. DOI: 10.1038/nm.2538.
|
[31] |
XU Y, ZHAO Z, LIU S, et al. Association of nonalcoholic fatty liver disease and coronary artery disease with FADS2 rs3834458 gene polymorphism in the Chinese Han population[J]. Gastroenterol Res Pract, 2019, 2019: 6069870. DOI: 10.1155/2019/6069870.
|
[32] |
ZHUANG L, ZHAO Y, ZHAO W, et al. The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population[J]. Mol Cell Biochem, 2015, 404(1-2): 133-141. DOI: 10.1007/s11010-015-2373-7.
|
[33] |
WEBSTER RJ, WARRINGTON NM, BEILBY JP, et al. The longitudinal association of common susceptibility variants for type 2 diabetes and obesity with fasting glucose level and BMI[J]. BMC Med Genet, 2010, 11: 140. DOI: 10.1186/1471-2350-11-140.
|
[34] |
PECIOSKA S, ZILLIKENS MC, HENNEMAN P, et al. Association between type 2 diabetes loci and measures of fatness[J]. PLoS One, 2010, 5(1): e8541. DOI: 10.1371/journal.pone.0008541.
|
[35] |
HOTTA K, KITAMOTO A, KITAMOTO T, et al. Association between type 2 diabetes genetic susceptibility loci and visceral and subcutaneous fat area as determined by computed tomography[J]. J Hum Genet, 2012, 57(5): 305-310. DOI: 10.1038/jhg.2012.21.
|
[36] |
AGARWAL A K, JAIN V, SINGLA S, et al. Prevalence of non-alcoholic fatty liver disease and its correlation with coronary risk factors in patients with type 2 diabetes[J]. J Assoc Physicians India, 2011, 59: 351-354. DOI: 10.14260/jemds/2015/1174.
|
[37] |
KATSIKI N, MIKHAILIDIS DP, MANTZOROS CS. Non-alcoholic fatty liver disease and dyslipidemia: An update[J]. Metabolism, 2016, 65(8): 1109-1123. DOI: 10.1016/j.metabol.2016.05.003.
|
[38] |
KHAN V, VERMA AK, BHATT D, et al. Association of genetic variants of KCNJ11 and KCNQ1 genes with risk of type 2 diabetes mellitus (T2DM) in the Indian population: A case-control study[J]. Int J Endocrinol, 2020, 2020: 5924756. DOI: 10.1155/2020/5924756.
|