中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 37 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

Screening and a preliminary study of specific microRNA for hepatic alveolar echinococcosis

DOI: 10.3969/j.issn.1001-5256.2021.01.027
  • Received Date: 2020-06-20
  • Accepted Date: 2020-10-19
  • Published Date: 2021-01-20
  •   Objective  To investigate new biomarkers for hepatic alveolar echinococcosis by screening out differentially expressed microRNAs (miRNAs) in the tissues and plasma of patients with hepatic alveolar echinococcosis, since hepatic alveolar echinococcosis is caused by the infection of multilocular hydatid cyst.  Methods  Patients with hepatic alveolar echinococcosis diagnosed in Qinghai University Affilrated Hospital from June 2016 to May 2018 were in cluded. Two marginal tissue samples and three adjacent normal tissue samples were collected from patients with hepatic alveolar echinococcosis, and plasma samples were collected from three patients with hepatic alveolar echinococcosis and three healthy controls. Agilent Human miRNA microarray was used to obtain the miRNA expression profile in tissue and plasma, and differentially expressed miRNAs were screened out based on fold change (FC > 1.2) and P value (P < 0.05). Plasma miRNAs and tissue miRNAs associated with liver diseases were selected based on target gene prediction of differentially expressed miRNAs and literature reports, and quantitative real-time PCR (qRT-PCR) was used for validation. The t-test was used for comparison of continuous data between two groups. A spearman analysis was used to investigate correlcction.  Results  There was a significant difference in microRNA expression profile between the patients with hepatic alveolar echinococcosis and the health individuals, and qRT-PCR found that three miRNAs (hsa-miR-4644, hsa-miR-136-5p, hsa-miR-483-3p) were significantly differentially expressed in patients with hepatic alveolar echinococcosis (P < 0.05), among which hsa-miR-4644 and hsa-miR-483-3p were significantly upregulated (P < 0.05) and hsa-miR- 136-5p was significantly downregulated (P < 0.05) in patients with hepatic alveolar echinococcosis. Target gene prediction was performed for miRNAs based on TargetScan, PITA, and microRNAorg databases, and the intersection of the target genes predicted by these three databases showed that 137 genes were targeted with miRNAs. The differentially expressed miRNA hsa-miR-483-3p was involved in the target regulation of the genes (IL17A, IL5, CD40LG, TAP2, and TNF) associated with immune response and liver diseases. Gene ontology and Kyoto Encyclopedia of Genes and Genome analyses showed that the target genes of hsa-miR-483-3p played an important role in the primary immunodeficiency signaling pathway, the IL-17 signaling pathway, and the TNF signaling pathway.  Conclusion  Hepatic alveolar echinococcosis has a unique microRNA expression profile, among which hsa-miR-483-3p can be used as a new biomarker for hepatic alveolar echinococcosis, and the target genes regulated by this miRNA are mainly involved in the primary immunodeficiency signaling pathway, the IL-17 signaling pathway, and the TNF signaling pathway. However, further studies are needed to verify the regulatory relationship between these miRNAs and hepatic alveolar echinococcosis.

     

  • loading
  • [1]
    WANG TP, CAO ZG. Current status of echinococcosis control in China and the existing challenges[J]. Chin J Parasitol Parasitic Dis, 2018, 36(3): 291-296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201803018.htm

    汪天平, 操治国. 中国棘球蚴病防控进展及其存在的问题[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 291-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201803018.htm
    [2]
    MOSS JE, CHEN X, LI T, et al. Reinfection studies of canine echinococcosis and role of dogs in transmission of Echinococcus multilocularis in Tibetan communities, Sichuan, China[J]. Parasitology, 2013, 140(13): 1685-1692. DOI: 10.1017/S0031182013001200
    [3]
    YAN CB, MURAT H, CHEN JJ, et al. The study of the CT image retrieval method about the xingjing local liver hydatid disease which has a higher incidence based on the image of Gray-level histogram features[J]. Bulletin Sci Technol, 2013, 29(3): 76-79. (in Chinese) DOI: 10.3969/j.issn.1001-7119.2013.03.015

    严传波, 木拉提·哈米提, 陈建军, 等. 基于新疆地方性高发病肝包虫病CT图像灰度直方图特征检索方法的研究[J]. 科技通报, 2013, 29(3): 76-79. DOI: 10.3969/j.issn.1001-7119.2013.03.015
    [4]
    HUANG SB, MI YY, LIU AQ, et al. The status and progression in the Diagnosis of Hepati echinococcosis[J]. Prog Mod Biomed, 2016, 16(4): 797-799. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201604049.htm

    黄士波, 米圆圆, 刘爱琴, 等. 肝包虫病的诊断现状及进展[J]. 现代生物医学进展, 2016, 16(4): 797-799. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201604049.htm
    [5]
    OUYANG X, JIANG X, GU D, et al. Dysregulated serum miRNA profile and promising biomarkers in dengue-infected patients[J]. Int J Med Sci, 2016, 13(3): 195-205. DOI: 10.7150/ijms.13996
    [6]
    SRINIVASAN S, SELVAN ST, ARCHUNAN G, et al. MicroRNAs-the next generation therapeutic targets in human diseases[J]. Theranostics, 2013, 3(12): 930-942. DOI: 10.7150/thno.7026
    [7]
    XU MJ, ZHOU DH, NISBET AJ, et al. Characterization of mouse brain microRNAs after infection with cyst-forming Toxoplasma gondii[J]. Parasit Vectors, 2013, 6: 154. DOI: 10.1186/1756-3305-6-154
    [8]
    ZHENG Y, CAI X, BRADLEY JE. microRNAs in parasites and parasite infection[J]. RNA Biol, 2013, 10(3): 371-379. DOI: 10.4161/rna.23716
    [9]
    JIN X, GUO X, ZHU D, et al. miRNA profiling in the mice in response to Echinococcus multilocularis infection[J]. Acta Trop, 2017, 166: 39-44. DOI: 10.1016/j.actatropica.2016.10.024
    [10]
    ZHENG Y, CAI X, BRADLEY JE. microRNAs in parasites and parasite infection[J]. RNA Biol, 2013, 10(3): 371-379. DOI: 10.4161/rna.23716
    [11]
    JUDICE CC, BOURGARD C, KAYANO AC, et al. MicroRNAs in the host-apicomplexan parasites interactions: Areview of immunopathological aspects[J]. Front Cell Infect Microbiol. 2016, 6: 5 http://www.ncbi.nlm.nih.gov/pubmed/26870701
    [12]
    MANZANO-ROMÁN R, SILES-LUCAS M. MicroRNAs in parasitic diseases: Potential for diagnosis and targeting[J]. Mol Biochem Parasitol, 2012, 186(2): 81-86. DOI: 10.1016/j.molbiopara.2012.10.001
    [13]
    CHENG G, LUO R, HU C, et al. Deep sequencing-based identification of pathogen-specific microRNAs in the plasma of rabbits infected with Schistosoma japonicum[J]. Parasitology, 2013, 140(14): 1751-1761. DOI: 10.1017/S0031182013000917
    [14]
    HOY AM, LUNDIE RJ, IVENS A, et al. Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection[J]. PLoS Negl Trop Dis, 2014, 8(2): e2701. DOI: 10.1371/journal.pntd.0002701
    [15]
    BRASE JC, WUTTIG D, KUNER R, et al. Serum microRNAs as non-invasive biomarkers for cancer[J]. Mol Cancer, 2010, 9: 306. DOI: 10.1186/1476-4598-9-306
    [16]
    ZHENG H, LIU JY, SONG FJ, et al. Advances in circulating microRNAs as diagnostic and prognostic markers for ovarian cancer[J]. Cancer Biol Med, 2013, 10(3): 123-130. http://europepmc.org/articles/PMC3860338
    [17]
    KINET V, HALKEIN J, DIRKX E, et al. Cardiovascular extracellular microRNAs: Emerging diagnostic markers and mechanisms of cell-to-cell RNA communication[J]. Front Genet, 2013, 4: 214. http://europepmc.org/abstract/med/24273550
    [18]
    TREBICKA J, ANADOL E, ELFIMOVA N, et al. Hepatic and serum levels of miR-122 after chronic HCV-induced fibrosis[J]. J Hepatol, 2013, 58(2): 234-239. DOI: 10.1016/j.jhep.2012.10.015
    [19]
    GRASEDIECK S, SORRENTINO A, LANGER C, et al. Circulating microRNAs in hematological diseases: Principles, challenges, and perspectives[J]. Blood, 2013, 121(25): 4977-4984. DOI: 10.1182/blood-2013-01-480079
    [20]
    HE X, SAI X, CHEN C, et al. Host serum miR-223 is a potential new biomarker for Schistosoma japonicum infection and the response to chemotherapy[J]. Parasit Vectors, 2013, 6: 272.
    [21]
    Chinese College of Surgeons(CCS)Chinese Committee for Hadytidology (CCH). Expert consensus on the diagnosis and treatment of hepatic cystic and alveolar echinococcosis(2015 edition)[J]Chin J Dig Surg, 2015, 14(4): 253-264. DOI: 10.3760/cma.j.issn.1673-9752.2015.04.001

    中国医师协会外科医师分会包虫病外科专业委员会. 肝两型包虫病诊断与治疗专家共识(2015版)[J]. 中华消化外科杂志, 2015, 14(4): 253-264. DOI: 10.3760/cma.j.issn.1673-9752.2015.04.001
    [22]
    WANG JF, YU ML, YU G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis[J]. Biochem Biophys Res Commun, 2010, 394(1): 184-188.
    [23]
    CICALESE MP, GEROSA J, BARONIO M, et al. Circulating follicular helper and follicular regulatory T cells are severely compromised in human CD40 deficiency: A case report[J]. Front Immunol, 2018, 9: 1761. http://www.ncbi.nlm.nih.gov/pubmed/30131802
    [24]
    ZOU MX, HUANG W, WANG XB, et al. Reduced expression of miRNA-1237-3p associated with poor survival of spinal chordoma patients[J]. Eur Spine J, 2015, 24(8): 1738-1746.
    [25]
    NTOUMOU E, TZETIS M, BRAOUDAKI M, et al. Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes[J]. Clin Epigenetics, 2017, 9: 127. DOI: 10.1186/s13148-017-0428-1
    [26]
    VASURI F, FITTIPALDI S, De PACE V, et al. Tissue miRNA 483-3p expression predicts tumor recurrence after surgical resection in histologically advanced hepatocellular carcinomas[J]. Oncotarget, 2018, 9(25): 17895-17905.
    [27]
    LUPINI L, PEPE F, FERRACIN M, et al. Over-expression of the miR-483-3p overcomes the miR-145/TP53 pro-apoptotic loop in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(21): 31361-31371. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058762/
    [28]
    HESS J, UNGER K, MAIHOEFER C, et al. A five-microRNA signature predicts survival and disease control of patients with head and neck cancer negative for HPV infection[J]. Clin Cancer Res, 2019, 25(5): 1505-1516. http://www.ncbi.nlm.nih.gov/pubmed/30171046
    [29]
    HAMAM R, HAMAM D, ALSALEH KA, et al. Circulating microRNAs in breast cancer: Novel diagnostic and prognostic biomarkers[J]. Cell Death Dis, 2017, 8(9): e3045. http://europepmc.org/abstract/MED/28880270
    [30]
    GIANNOPOULOU L, ZAVRIDOU M, KASIMIR-BAUER S, et al. Liquid biopsy in ovarian cancer: The potential of circulating miRNAs and exosomes[J]. Transl Res, 2019, 205: 77-91.
    [31]
    GUAY C, REGAZZI R. Circulating microRNAs as novel biomarkers for diabetes mellitus[J]. Nat Rev Endocrinol, 2013, 9(9): 513-521. http://www.nature.com/nrendo/journal/v9/n9/abs/nrendo.2013.86.html
    [32]
    GANDHI R, HEALY B, GHOLIPOUR T, et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis[J]. Ann Neurol, 2013, 73(6): 729-740.
    [33]
    KHOO SK, PETILLO D, KANG UJ, et al. Plasma-based circulating MicroRNA biomarkers for Parkinson's disease[J]. J Parkinsons Dis, 2012, 2(4): 321-331.
    [34]
    ABUE M, YOKOYAMA M, SHIBUYA R, et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer[J]. Int J Oncol, 2015, 46(2): 539-547. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277249/
    [35]
    BERTERO T, GASTALDI C, BOURGET-PONZIO I, et al. miR-483-3p controls proliferation in wounded epithelial cells[J]. FASEB J, 2011, 25(9): 3092-3105. http://www.ncbi.nlm.nih.gov/pubmed/21676945?dopt=AbstractPlus
    [36]
    PEPE F, VISONE R, VERONESE A. The glucose-regulated miR-483-3p influences key signaling pathways in cancer[J]. Cancers (Basel), 2018, 10(6): 181. DOI: 10.3390/cancers10060181
    [37]
    ABUE M, YOKOYAMA M, SHIBUYA R, et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer[J]. Int J Oncol, 2015, 46(2): 539-547. DOI: 10.3892/ijo.2014.2743
    [38]
    KUSCHNERUS K, STRAESSLER ET, MVLLER MF, et al. Increased expression of miR-483-3p impairs the vascular response to injury in type 2 diabetes[J]. Diabetes, 2019, 68(2): 349-360. DOI: 10.2337/db18-0084
    [39]
    QIAO Y, ZHAO Y, LIU Y, et al. miR-483-3p regulates hyperglycaemia-induced cardiomyocyte apoptosis in transgenic mice[J]. Biochem Biophys Res Commun, 2016, 477(4): 541-547. DOI: 10.1016/j.bbrc.2016.06.051
    [40]
    GUO X, ZHENG Y. Expression profiling of circulating miRNAs in mouse serum in response to Echinococcus multilocularis infection[J]. Parasitology, 2017, 144(8): 1079-1087. DOI: 10.1017/S0031182017000300
    [41]
    ZHANG J, LIU B, LI Y, et al. Comparison of serum immunoglobulin levels in patients with alveolar and cystic echinococcosis[J]. Chin J Parasitol Parasitic Dis, 1990, 8(1): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB199001018.htm

    张京元, 刘波, 李燕宾, 等. 泡球蚴病和棘球蚴病患者血清IgG、IgA和IgM水平比较[J]. 中国寄生虫学与寄生虫病杂志, 1990, 8(1): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB199001018.htm
    [42]
    WANG H, LI J, PU H, et al. Echinococcus granulosus infection reduces airway inflammation of mice likely through enhancing IL-10 and down-regulation of IL-5 and IL-17A[J]. Parasit Vectors, 2014, 7: 522. DOI: 10.1186/s13071-014-0522-6
    [43]
    GIANNIOS I, CHATZANTONAKI E, GEORGATOS S. Dynamics and structure-function relationships of the lamin B receptor (LBR)[J]. PLoS One, 2017, 12(1): e0169626. DOI: 10.1371/journal.pone.0169626
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (496) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return