中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 9
Sep.  2025
Turn off MathJax
Article Contents

Mechanism of action of the nuclear factor-kappa B signaling pathway in liver diseases and its potential as a therapeutic target

DOI: 10.12449/JCH250936
Research funding:

National Natural Science Foundation of China (82260899);

Key Program Project under the Joint Fund of the National Natural Science Foundation of China (U23A20521);

Guangxi Science and Technology Major Project (Guike AA23023035);

High level Key Discipline Construction Project of Traditional Chinese Medicine-Internal Medicine of Traditional Chinese Medicine (zyyzdxk-2023166);

Guangxi Postgraduate Education Innovation Program (YCSW2024407);

Yao Chungui School TCM Master Inheritance Studio (GZY2024002);

Guangxi's First Class Discipline of Traditional Chinese Medicine (GJI Scientific Research [2022] No.1)

More Information
  • Corresponding author: YAO Chun, yaochunlshn@163.com (ORCID: 0000-0003-2903-8814); LAN Yanmei, lanyanmeixueshu@163.com (ORCID: 0000-0001-9304-0594)
  • Received Date: 2024-12-24
  • Accepted Date: 2025-01-16
  • Published Date: 2025-09-25
  • Nuclear factor-kappa B (NF-κB) is an important intracellular transcription factor widely involved in the processes such as immune response, inflammatory response, cell proliferation, and apoptosis. The abnormal activation of the NF-κB signaling pathway plays a pivotal role in various liver diseases including chronic hepatitis, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Extensive studies have shown that inhibiting NF-κB activity may effectively reduce inflammation and fibrosis and improve metabolic disorders. Several natural compounds, such as matrine and salvianolic acid B, have shown the potential in suppressing NF-κB activity, thereby exerting anti-inflammatory, anti-fibrotic, and anti-tumor effects. This article systematically reviews the critical role of the NF-κB signaling pathway in liver diseases and its potential as a therapeutic target, in order to highlight its potential as a therapeutic target for liver diseases and provide new directions for the treatment of liver diseases.

     

  • loading
  • [1]
    POMA P. NF-κB and disease[J]. Int J Mol Sci, 2020, 21( 23): E9181. DOI: 10.3390/ijms21239181.
    [2]
    LIU T, ZHANG LY, JOO D, et al. NF-κB signaling in inflammation[J]. Signal Transduct Target Ther, 2017, 2: 17023. DOI: 10.1038/sigtrans.2017.23.
    [3]
    LI F, ZHANG J, ARFUSO F, et al. NF-κB in cancer therapy[J]. Arch Toxicol, 2015, 89( 5): 711- 731. DOI: 10.1007/s00204-015-1470-4.
    [4]
    ZHANG Q, LENARDO MJ, BALTIMORE D. 30 years of NF-κB: A blossoming of relevance to human pathobiology[J]. Cell, 2017, 168( 1-2): 37- 57. DOI: 10.1016/j.cell.2016.12.012.
    [5]
    SEN R. The origins of NF-κB[J]. Nat Immunol, 2011, 12( 8): 686- 688. DOI: 10.1038/ni.2071.
    [6]
    BALTIMORE D. NF-κB is 25[J]. Nat Immunol, 2011, 12( 8): 683- 685. DOI: 10.1038/ni.2072.
    [7]
    HAYDEN MS, GHOSH S. Shared principles in NF-κB signaling[J]. Cell, 2008, 132( 3): 344- 362. DOI: 10.1016/j.cell.2008.01.020.
    [8]
    BONIZZI G, KARIN M. The two NF-κB activation pathways and their role in innate and adaptive immunity[J]. Trends Immunol, 2004, 25( 6): 280- 288. DOI: 10.1016/j.it.2004.03.008.
    [9]
    CAPECE D, VERZELLA D, FLATI I, et al. NF-κB: Blending metabolism, immunity, and inflammation[J]. Trends Immunol, 2022, 43( 9): 757- 775. DOI: 10.1016/j.it.2022.07.004.
    [10]
    HELD SA, HEINE A, WOLF D, et al. Ruxolitinib inhibits dendritic cell function by interfering with the MAP-kinase/NF-κB signalling pathways[J]. Blood, 2013, 122( 21): 3463. DOI: 10.1182/blood.V122.21.3463.3463.
    [11]
    LINGAPPAN K. NF-κB in oxidative stress[J]. Curr Opin Toxicol, 2018, 7: 81- 86. DOI: 10.1016/j.cotox.2017.11.002.
    [12]
    SUN E, MOTOLANI A, CAMPOS L, et al. The pivotal role of NF-κB in the pathogenesis and therapeutics of Alzheimer’s disease[J]. Int J Mol Sci, 2022, 23( 16): 8972. DOI: 10.3390/ijms23168972.
    [13]
    LV J, ZHU J, WANG PH, et al. Artemisinin exerts a protective effect in the MPTP mouse model of Parkinson’s disease by inhibiting microglial activation via the TLR4/Myd88/NF-KB pathway[J]. CNS Neurosci Ther, 2023, 29( 4): 1012- 1023. DOI: 10.1111/cns.14063.
    [14]
    TRISCIUOGLIO D, TUPONE MG, DESIDERI M, et al. BCL-XL overexpression promotes tumor progression-associated properties[J]. Cell Death Dis, 2017, 8( 12): 3216. DOI: 10.1038/s41419-017-0055-y.
    [15]
    ZINATIZADEH MR, SCHOCK B, CHALBATANI GM, et al. The Nuclear Factor Kappa B(NF-κB) signaling in cancer development and immune diseases[J]. Genes Dis, 2020, 8( 3): 287- 297. DOI: 10.1016/j.gendis.2020.06.005.
    [16]
    CAO YX, KARIN M. NF-kappa B in mammary gland development and breast cancer[J]. J Mammary Gland Biol Neoplasia, 2003, 8( 2): 215- 223. DOI: 10.1023/a:1025905008934.
    [17]
    STURTZEL C. Endothelial cells[J]. Adv Exp Med Biol, 2017, 1003: 71- 91. DOI: 10.1007/978-3-319-57613-8_4.
    [18]
    FOWLER JWM, ZHANG R, TAO B, et al. Inflammatory stress signaling via NF-κB alters accessible cholesterol to upregulate SREBP2 transcriptional activity in endothelial cells[J]. eLife, 2022, 11: e79529. DOI: 10.7554/eLife.79529.
    [19]
    GULDENPFENNIG C, TEIXEIRO E, DANIELS M. NF-κB’s contribution to B cell fate decisions[J]. Front Immunol, 2023, 14: 1214095. DOI: 10.3389/fimmu.2023.1214095.
    [20]
    ZOULIM F, CHEN PJ, DANDRI M, et al. Hepatitis B virus DNA integration: Implications for diagnostics, therapy, and outcome[J]. J Hepatol, 2024, 81( 6): 1087- 1099. DOI: 10.1016/j.jhep.2024.06.037.
    [21]
    IRSHAD M, GUPTA P, IRSHAD K. Immunopathogenesis of liver injury during hepatitis C virus infection[J]. Viral Immunol, 2019, 32( 3): 112- 120. DOI: 10.1089/vim.2018.0124.
    [22]
    LIU DH, ZHONG ZY, KARIN M. NF-κB: A double-edged sword controlling inflammation[J]. Biomedicines, 2022, 10( 6): 1250. DOI: 10.3390/biomedicines10061250.
    [23]
    WEISKIRCHEN R, TACKE F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology[J]. Hepatobiliary Surg Nutr, 2014, 3( 6): 344- 363. DOI: 10.3978/j.issn.2304-3881.2014.11.03.
    [24]
    ZHENG HY, WANG XY, ZHANG YQ, et al. Pien-Tze-Huang ameliorates hepatic fibrosis via suppressing NF-κB pathway and promoting HSC apoptosis[J]. J Ethnopharmacol, 2019, 244: 111856. DOI: 10.1016/j.jep.2019.111856.
    [25]
    LI X, JIN QW, YAO QY, et al. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways[J]. Toxicol Lett, 2016, 261: 1- 12. DOI: 10.1016/j.toxlet.2016.09.002.
    [26]
    MIN YQ, LI S, LIU XH, et al. Research advances in the cascade interaction between reactive oxygen species/reactive nitrogen species and the NF-κB signaling pathway in liver fibrosis[J]. J Clin Hepatol, 2023, 39( 6): 1454- 1460. DOI: 10.3969/j.issn.1001-5256.2023.06.031.

    闵远骞, 李姗, 刘湘花, 等. 活性氧/活性氮与NF-κB信号通路级联交互在肝纤维化中的作用[J]. 临床肝胆病杂志, 2023, 39( 6): 1454- 1460. DOI: 10.3969/j.issn.1001-5256.2023.06.031.
    [27]
    GINÈS P, KRAG A, ABRALDES JG, et al. Liver cirrhosis[J]. Lancet, 2021, 398( 10308): 1359- 1376. DOI: 10.1016/S0140-6736(21)01374-X.
    [28]
    WANG PP, XIE DY, LIANG XJ, et al. HGF and direct mesenchymal stem cells contact synergize to inhibit hepatic stellate cells activation through TLR4/NF-kB pathway[J]. PLoS One, 2012, 7( 8): e43408. DOI: 10.1371/journal.pone.0043408.
    [29]
    FANG Y, ZHOU LL, HU XX, et al. TLR4-MyD88-NF-κB signaling pathway contributes to the progression of secondary hepatic injury and fibrosis in hepatolithiasis[J]. Eur J Inflamm, 2021, 19: 20587392211014762. DOI: 10.1177/20587392211014762.
    [30]
    ALDABA-MURUATO LR, MORENO MG, SHIBAYAMA M, et al. Protective effects of allopurinol against acute liver damage and cirrhosis induced by carbon tetrachloride: Modulation of NF-κB, cytokine production and oxidative stress[J]. Biochim Biophys Acta, 2012, 1820( 2): 65- 75. DOI: 10.1016/j.bbagen.2011.09.018.
    [31]
    CUI YZ, WANG QJ, CHANG RX, et al. Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota[J]. J Agric Food Chem, 2019, 67( 10): 2754- 2762. DOI: 10.1021/acs.jafc.9b00080.
    [32]
    ZHONG WH, QIAN KJ, XIONG JB, et al. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling[J]. Biomed Pharmacother, 2016, 83: 302- 313. DOI: 10.1016/j.biopha.2016.06.036.
    [33]
    YANG F, LI X, WANG LK, et al. Inhibitions of NF-κB and TNF-α result in differential effects in rats with acute on chronic liver failure induced by d-Gal and LPS[J]. Inflammation, 2014, 37( 3): 848- 857. DOI: 10.1007/s10753-013-9805-x.
    [34]
    XAVIER BOSCH F, RIBES J, DÍAZ M, et al. Primary liver cancer: Worldwide incidence and trends[J]. Gastroenterology, 2004, 127(5 Suppl 1): S5- S16. DOI: 10.1053/j.gastro.2004.09.011.
    [35]
    MANN DA, OAKLEY F. NF-κB: A signal for cancer[J]. J Hepatol, 2005, 42( 4): 610- 611. DOI: 10.1016/j.jhep.2005.01.007.
    [36]
    HUANG XH, JIAN WH, WU ZF, et al. Small interfering RNA(siRNA)-mediated knockdown of macrophage migration inhibitory factor(MIF) suppressed cyclin D1 expression and hepatocellular carcinoma cell proliferation[J]. Oncotarget, 2014, 5( 14): 5570- 5580. DOI: 10.18632/oncotarget.2141.
    [37]
    FENG YX, ZHAO JS, LI JJ, et al. Liver cancer: EphrinA2 promotes tumorigenicity through Rac1/Akt/NF-κB signaling pathway[J]. Hepatology, 2010, 51( 2): 535- 544. DOI: 10.1002/hep.23313.
    [38]
    FENG Y, ZU LL, ZHANG L. microRNA-26b inhibits the tumor growth of human liver cancer through the PI3K/Akt and NF-κB/MMP-9/VEGF pathways[J]. Oncol Rep, 2018, 39( 5): 2288- 2296. DOI: 10.3892/or.2018.6289.
    [39]
    BEN-NERIAH Y, KARIN M. Inflammation meets cancer, with NF-κB as the matchmaker[J]. Nat Immunol, 2011, 12( 8): 715- 723. DOI: 10.1038/ni.2060.
    [40]
    MANCINO A, LAWRENCE T. Nuclear factor-κB and tumor-associated macrophages[J]. Clin Cancer Res, 2010, 16( 3): 784- 789. DOI: 10.1158/1078-0432.ccr-09-1015.
    [41]
    LIU T, WEI RD, ZHANG YT, et al. Association between NF-κB expression and drug resistance of liver cancer[J]. Oncol Lett, 2019, 17( 1): 1030- 1034. DOI: 10.3892/ol.2018.9640.
    [42]
    NOWAK AJ, RELJA B. The impact of acute or chronic alcohol intake on the NF-κB signaling pathway in alcohol-related liver disease[J]. Int J Mol Sci, 2020, 21( 24): 9407. DOI: 10.3390/ijms21249407.
    [43]
    PARK HY, KANG HS, IM SS. Recent insight into the correlation of SREBP-mediated lipid metabolism and innate immune response[J]. J Mol Endocrinol, 2018, 61( 3): R123- R131. DOI: 10.1530/JME-17-0289.
    [44]
    SATAPATI S, KUCEJOVA B, DUARTE JAG, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver[J]. J Clin Invest, 2016, 126( 4): 1605. DOI: 10.1172/JCI86695.
    [45]
    YU J, SHEN JY, SUN TT, et al. Obesity, insulin resistance, NASH and hepatocellular carcinoma[J]. Semin Cancer Biol, 2013, 23( 6 Pt B): 483- 491. DOI: 10.1016/j.semcancer.2013.07.003.
    [46]
    FANG CQ, PAN JH, QU N, et al. The AMPK pathway in fatty liver disease[J]. Front Physiol, 2022, 13: 970292. DOI: 10.3389/fphys.2022.970292.
    [47]
    QUE WC, LIN HL, LI XY, et al. Koumine ameliorates concanavalin A-induced autoimmune hepatitis in mice: Involvement of the Nrf2, NF-κB pathways, and gut microbiota[J]. Int Immunopharmacol, 2023, 114: 109573. DOI: 10.1016/j.intimp.2022.109573.
    [48]
    WANG R, LI SN, CHEN PP, et al. Salvianolic acid B suppresses hepatic stellate cell activation and liver fibrosis by inhibiting the NF-κB signaling pathway via miR-6499-3p/LncRNA-ROR[J]. Phytomedicine, 2022, 107: 154435. DOI: 10.1016/j.phymed.2022.154435.
    [49]
    CHEN G, WANG YH, LI MQ, et al. Curcumol induces HSC-T6 cell death through suppression of Bcl-2: Involvement of PI3K and NF-κB pathways[J]. Eur J Pharm Sci, 2014, 65: 21- 28. DOI: 10.1016/j.ejps.2014.09.001.
    [50]
    WANG HL, CHE JY, CUI K, et al. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo[J]. Phytomedicine, 2021, 88: 153609. DOI: 10.1016/j.phymed.2021.153609.
    [51]
    HE XX, HUANG ZZ, LIU P, et al. Apatinib inhibits the invasion and metastasis of liver cancer cells by downregulating MMP-related proteins via regulation of the NF-κB signaling pathway[J]. Biomed Res Int, 2020, 2020: 3126182. DOI: 10.1155/2020/3126182.
    [52]
    ZHOU QM, SONG HY, LIU Y, et al. The effect of Dangfei Liganning Capsules on the SIRT1/NF-κB/p53 signaling pathway in liver tissues of CCl4-induced acute liver injury in rats with non-alcoholic fatty liver disease[J]. Shanghai J Tradit Chin Med, 2024, 58( 5): 78- 85. DOI: 10.16305/j.1007-1334.2024.2304046.

    周岐鸣, 宋海燕, 刘洋, 等. 当飞利肝宁胶囊对CCl4诱导的非酒精性脂肪性肝病大鼠急性肝损伤肝组织SIRT1/NF-κB/p53信号通路的影响[J]. 上海中医药杂志, 2024, 58( 5): 78- 85. DOI: 10.16305/j.1007-1334.2024.2304046.
    [53]
    SONG WX, LI S, AN MJ, et al. Yinchen gongying decoction ameliorates NAFLD via IRS/AKT/FoxO1 and TLR4/NF-κB signaling pathways[J]. Pharmacol Clin Chin Mater Med, 2025, 41( 2): 8- 15. DOI: 10.13412/j.cnki.zyyl.20240807.003.

    宋汶轩, 李爽, 安梦娇, 等. 茵陈公英汤通过IRS/AKT/FoxO1和TLR4/NF-κB信号通路改善非酒精性脂肪肝病[J]. 中药药理与临床, 2025, 41( 2): 8- 15. DOI: 10.13412/j.cnki.zyyl.20240807.003.
    [54]
    WANG WX, FU XL, QI M, et al. Mechanism of action of Carthamus tinctorius L. extract on alcoholic liver disease through modulation of Nrf2/STAT3/NF-κB signaling pathway[J]. Tradit Chin Drug Res Clin Pharmacol, 2024, 35( 8): 1132- 1141. DOI: 10.19378/j.issn.1003-9783.2024.08.004.

    王文萱, 付向磊, 戚曼, 等. 红花提取物通过调控Nrf2/STAT3/NF-κB信号通路对酒精性肝病的作用机制研究[J]. 中药新药与临床药理, 2024, 35( 8): 1132- 1141. DOI: 10.19378/j.issn.1003-9783.2024.08.004.
    [55]
    ZOU YQ, SHI H, LIU X, et al. Effect of dendrobii caulis mixture on cell inflammatory response and apoptosis in diabetic rats with nonalcoholic fatty liver disease based on NF-κB/NLRP3/IL-1β signaling pathway[J]. Chin J Exp Tradit Med Formulae, 2023, 29( 18): 78- 86. DOI: 10.13422/j.cnki.syfjx.20231064.

    邹玉卿, 施红, 刘欣, 等. 基于NF-κB/NLRP3/IL-1β信号通路探讨石斛合剂对糖尿病伴非酒精性脂肪性肝病大鼠细胞炎症反应及凋亡的作用[J]. 中国实验方剂学杂志, 2023, 29( 18): 78- 86. DOI: 10.13422/j.cnki.syfjx.20231064.
    [56]
    TIAN GG, XIA ER, ZHANG SY, et al. Research advances in traditional Chinese medicine in improving nonalcoholic steatohepatitis by regulating the Toll-like receptor 4/nuclear factor-kappa B signaling pathway[J]. J Clin Hepatol, 2021, 37( 12): 2957- 2962. DOI: 10.3969/j.issn.1001-5256.2021.12.047.

    田格格, 夏恩蕊, 张素妍, 等. 中药调控Toll样受体4/核因子-κB通路改善非酒精性脂肪性肝炎的研究进展[J]. 临床肝胆病杂志, 2021, 37( 12): 2957- 2962. DOI: 10.3969/j.issn.1001-5256.2021.12.047.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (146) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return