| [1] |
LE MH, LE DM, BAEZ TC, et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1, 201, 807 persons[J]. J Hepatol, 2023, 79( 2): 287- 295. DOI: 10.1016/j.jhep.2023.03.040.
|
| [2] |
POWELL EE, WONG VW, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397( 10290): 2212- 2224. DOI: 10.1016/S0140-6736(20)32511-3.
|
| [3] |
WU YK, ZHENG Q, ZOU BY, et al. The epidemiology of NAFLD in Mainland China with analysis by adjusted gross regional domestic product: A meta-analysis[J]. Hepatol Int, 2020, 14( 2): 259- 269. DOI: 10.1007/s12072-020-10023-3.
|
| [4] |
ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158( 7): 1999- 2014.e1. DOI: 10.1053/j.gastro.2019.11.312.
|
| [5] |
LONG QC, LUO FM, LI BH, et al. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease[J]. Hepatol Commun, 2024, 8( 3): e0310. DOI: 10.1097/HC9.0000000-000000310.
|
| [6] |
LOOMBA R, SCHORK N, CHEN CH, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study[J]. Gastroenterology, 2015, 149( 7): 1784- 1793. DOI: 10.1053/j.gastro.2015.08.011.
|
| [7] |
SOOKOIAN S, PIROLA CJ. Genetic predisposition in nonalcoholic fatty liver disease[J]. Clin Mol Hepatol, 2017, 23( 1): 1- 12. DOI: 10.3350/cmh.2016.0109.
|
| [8] |
SCHWIMMER JB, CELEDON MA, LAVINE JE, et al. Heritability of nonalcoholic fatty liver disease[J]. Gastroenterology, 2009, 136( 5): 1585- 1592. DOI: 10.1053/j.gastro.2009.01.050.
|
| [9] |
CUI J, CHEN CH, LO MT, et al. Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study[J]. Hepatology, 2016, 64( 5): 1547- 1558. DOI: 10.1002/hep.28674.
|
| [10] |
BUCH S, STICKEL F, TRÉPO E, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis[J]. Nat Genet, 2015, 47( 12): 1443- 1448. DOI: 10.1038/ng.3417.
|
| [11] |
WHITFIELD JB, SCHWANTES-AN TH, DARLAY R, et al. A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers[J]. J Hepatol, 2022, 76( 2): 275- 282. DOI: 10.1016/j.jhep.2021.10.005.
|
| [12] |
SVEINBJORNSSON G, ULFARSSON MO, THOROLFSDOTTIR RB, et al. Multiomics study of nonalcoholic fatty liver disease[J]. Nat Genet, 2022, 54( 11): 1652- 1663. DOI: 10.1038/s41588-022-01199-5.
|
| [13] |
CHEN VL, OLIVERI A, MILLER MJ, et al. PNPLA3 genotype and diabetes identify patients with nonalcoholic fatty liver disease at high risk of incident cirrhosis[J]. Gastroenterology, 2023, 164( 6): 966- 977. e 17. DOI: 10.1053/j.gastro.2023.01.040.
|
| [14] |
JIN R, BANTON S, TRAN VT, et al. Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution metabolomics study[J]. J Pediatr, 2016, 172: 14- 19. e 5. DOI: 10.1016/j.jpeds.2016.01.026.
|
| [15] |
MASARONE M, TROISI J, AGLITTI A, et al. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis[J]. Metabolomics, 2021, 17( 2): 12. DOI: 10.1007/s11306-020-01756-1.
|
| [16] |
GAGGINI M, CARLI F, ROSSO C, et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance[J]. Hepatology, 2018, 67( 1): 145- 158. DOI: 10.1002/hep.29465.
|
| [17] |
ZHANG FY, ZHAO SH, YAN WJ, et al. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy[J]. EBioMedicine, 2016, 13: 157- 167. DOI: 10.1016/j.ebiom.2016.10.013.
|
| [18] |
MIYAZAKI T, KARUBE M, MATSUZAKI Y, et al. Taurine inhibits oxidative damage and prevents fibrosis in carbon tetrachloride-induced hepatic fibrosis[J]. J Hepatol, 2005, 43( 1): 117- 125. DOI: 10.1016/j.jhep.2005.01.033.
|
| [19] |
FORLANO R, MARTINEZ-GILI L, TAKIS P, et al. Disruption of gut barrier integrity and host-microbiome interactions underlie MASLD severity in patients with type-2 diabetes mellitus[J]. Gut Microbes, 2024, 16( 1): 2304157. DOI: 10.1080/19490976.2024.2304157.
|
| [20] |
SMIRNOVA E, MUTHIAH MD, NARAYAN N, et al. Metabolic reprogramming of the intestinal microbiome with functional bile acid changes underlie the development of NAFLD[J]. Hepatology, 2022, 76( 6): 1811- 1824. DOI: 10.1002/hep.32568.
|
| [21] |
ZHONG J, HE XF, GAO XX, et al. Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling[J]. Nat Commun, 2023, 14( 1): 5451. DOI: 10.1038/s41467-023-41061-8.
|
| [22] |
KUANG JL, WANG JY, LI YT, et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis[J]. Cell Metab, 2023, 35( 10): 1752- 1766. e 8. DOI: 10.1016/j.cmet.2023.07.011.
|
| [23] |
YOUNOSSI ZM, RATZIU V, LOOMBA R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394( 10215): 2184- 2196. DOI: 10.1016/S0140-6736(19)33041-7.
|
| [24] |
OOI GJ, MEIKLE PJ, HUYNH K, et al. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis[J]. J Hepatol, 2021, 75( 3): 524- 535. DOI: 10.1016/j.jhep.2021.04.013.
|
| [25] |
VELENOSI TJ, BEN-YAKOV G, PODSZUN MC, et al. Postprandial plasma lipidomics reveal specific alteration of hepatic-derived diacylglycerols in nonalcoholic fatty liver disease[J]. Gastroenterology, 2022, 162( 7): 1990- 2003. DOI: 10.1053/j.gastro.2022.03.004.
|
| [26] |
GORDEN DL, MYERS DS, IVANOVA PT, et al. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic[J]. J Lipid Res, 2015, 56( 3): 722- 736. DOI: 10.1194/jlr.P056002.
|
| [27] |
CHAURASIA B, TIPPETTS TS, MONIBAS RM, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis[J]. Science, 2019, 365( 6451): 386- 392. DOI: 10.1126/science.aav3722.
|
| [28] |
PAGADALA M, KASUMOV T, MCCULLOUGH AJ, et al. Role of ceramides in nonalcoholic fatty liver disease[J]. Trends Endocrinol Metab, 2012, 23( 8): 365- 371. DOI: 10.1016/j.tem.2012.04.005.
|
| [29] |
CAUSSY C, AJMERA VH, PURI P, et al. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease[J]. Gut, 2019, 68( 10): 1884- 1892. DOI: 10.1136/gutjnl-2018-317584.
|
| [30] |
SPOONER MH, JUMP DB. Nonalcoholic fatty liver disease and omega-3 fatty acids: Mechanisms and clinical use[J]. Annu Rev Nutr, 2023, 43: 199- 223. DOI: 10.1146/annurev-nutr-061021-030223.
|
| [31] |
MA C, KESARWALA AH, EGGERT T, et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis[J]. Nature, 2016, 531( 7593): 253- 257. DOI: 10.1038/nature16969.
|
| [32] |
van NAME MA, SAVOYE M, CHICK JM, et al. A low ω-6 to ω-3 PUFA ratio(n-6: N-3 PUFA) diet to treat fatty liver disease in obese youth[J]. J Nutr, 2020, 150( 9): 2314- 2321. DOI: 10.1093/jn/nxaa183.
|
| [33] |
OLIVEIRA DT, CHAVES-FILHO AB, YOSHINAGA MY, et al. Liver lipidome signature and metabolic pathways in nonalcoholic fatty liver disease induced by a high-sugar diet[J]. J Nutr Biochem, 2021, 87: 108519. DOI: 10.1016/j.jnutbio.2020.108519.
|
| [34] |
OGAWA Y, KOBAYASHI T, HONDA Y, et al. Metabolomic/lipidomic-based analysis of plasma to diagnose hepatocellular ballooning in patients with non-alcoholic fatty liver disease: A multicenter study[J]. Hep‑atol Res, 2020, 50( 8): 955- 965. DOI: 10.1111/hepr.13528.
|
| [35] |
XIA JL, CHEN H, WANG XX, et al. Sphingosine d18: 1 promotes nonalcoholic steatohepatitis by inhibiting macrophage HIF-2α[J]. Nat Commun, 2024, 15( 1): 4755. DOI: 10.1038/s41467-024-48954-2.
|
| [36] |
LOOMBA R, SEGURITAN V, LI WZ, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J]. Cell Metab, 2017, 25( 5): 1054- 1062.e5. DOI: 10.1016/j.cmet.2017.04.001.
|
| [37] |
OH TG, KIM SM, CAUSSY C, et al. A universal gut-microbiome-derived signature predicts cirrhosis[J]. Cell Metab, 2020, 32( 5): 878- 888.e6. DOI: 10.1016/j.cmet.2020.06.005.
|
| [38] |
HU YQ, HU XY, JIANG L, et al. Microbiome and metabolomics reveal the effect of gut microbiota on liver regeneration of fatty liver disease[J]. EBioMedicine, 2025, 111: 105482. DOI: 10.1016/j.ebiom.2024.105482.
|
| [39] |
LIU JJ, SUN JY, YU JK, et al. Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism[J]. NPJ Biofilms Microbiomes, 2023, 9( 1): 29. DOI: 10.1038/s41522-023-00399-z.
|
| [40] |
MOHAMAD NOR MH, AYOB N, MOKHTAR NM, et al. The effect of probiotics(MCP® BCMC® strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease[J]. Nutrients, 2021, 13( 9): 3192. DOI: 10.3390/nu13093192.
|
| [41] |
ZHU YZ, TAN JK, LIU J, et al. Roles of traditional and next-generation probiotics on non-alcoholic fatty liver disease(NAFLD) and non-alcoholic steatohepatitis(NASH): A systematic review and network meta-analysis[J]. Antioxidants(Basel), 2024, 13( 3): 329. DOI: 10.3390/antiox13030329.
|
| [42] |
THING M, WERGE MP, KIMER N, et al. Targeted metabolomics reveals plasma short-chain fatty acids are associated with metabolic dysfunction-associated steatotic liver disease[J]. BMC Gastroenterol, 2024, 24( 1): 43. DOI: 10.1186/s12876-024-03129-7.
|
| [43] |
ZHANG X, LAU HC, YU J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options[J]. Pharmacol Rev, 2025, 77( 2): 100018. DOI: 10.1016/j.pharmr.2024.100018.
|
| [44] |
LEÓN-MIMILA P, VILLAMIL-RAMÍREZ H, LI XS, et al. Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes[J]. Diabetes Metab, 2021, 47( 2): 101183. DOI: 10.1016/j.diabet.2020.07.010.
|
| [45] |
FLORES-GUERRERO JL, POST A, van DIJK PR, et al. Circulating trimethylamine-N-oxide is associated with all-cause mortality in subjects with nonalcoholic fatty liver disease[J]. Liver Int, 2021, 41( 10): 2371- 2382. DOI: 10.1111/liv.14963.
|
| [46] |
KRISHNAN S, DING YF, SAEDI N, et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages[J]. Cell Rep, 2018, 23( 4): 1099- 1111. DOI: 10.1016/j.celrep.2018.03.109.
|
| [47] |
ZHAO ZH, XIN FZ, XUE YQ, et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats[J]. Exp Mol Med, 2019, 51( 9): 1- 14. DOI: 10.1038/s12276-019-0304-5.
|
| [48] |
MUSSO G, GAMBINO R, CASSADER M, et al. Meta-analysis: Natural history of non-alcoholic fatty liver disease(NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity[J]. Ann Med, 2011, 43( 8): 617- 649. DOI: 10.3109/07853890.2010.518623.
|
| [49] |
Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dysfunction-associated(non-alcoholic) fatty liver disease(version 2024)[J]. J Prac Hepatol, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163.
中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 实用肝脏病杂志, 2024, 27( 4): 494- 510. DOI: 10.3760/cma.j.cn501113-20240327-00163.
|
| [50] |
BYRNE CD, TARGHER G. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease: Is universal screening appropriate?[J]. Diabetologia, 2016, 59( 6): 1141- 1144. DOI: 10.1007/s00125-016-3910-y.
|
| [51] |
JEONG C, HAN N, JEON N, et al. Efficacy and safety of fibroblast growth factor-21 analogs for the treatment of metabolic dysfunction-associated steatohepatitis: A systematic review and meta-analysis[J]. Clin Pharmacol Ther, 2024, 116( 1): 72- 81. DOI: 10.1002/cpt.3278.
|
| [52] |
NIU LL, GEYER PE, WEWER ALBRECHTSEN NJ, et al. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease[J]. Mol Syst Biol, 2019, 15( 3): e8793. DOI: 10.15252/msb.20188793.
|
| [53] |
GOVAERE O, HASOON M, ALEXANDER L, et al. A proteo-transcript‑omic map of non-alcoholic fatty liver disease signatures[J]. Nat Metab, 2023, 5( 4): 572- 578. DOI: 10.1038/s42255-023-00775-1.
|
| [54] |
COREY KE, PITTS R, LAI M, et al. ADAMTSL2 protein and a soluble biomarker signature identify at-risk non-alcoholic steatohepatitis and fibrosis in adults with NAFLD[J]. J Hepatol, 2022, 76( 1): 25- 33. DOI: 10.1016/j.jhep.2021.09.026.
|
| [55] |
INDIRA CHANDRAN V, WERNBERG CW, LAURIDSEN MM, et al. Circulating TREM2 as a noninvasive diagnostic biomarker for NASH in patients with elevated liver stiffness[J]. Hepatology, 2023, 77( 2): 558- 572. DOI: 10.1002/hep.32620.
|
| [56] |
MAYO R, CRESPO J, MARTÍNEZ-ARRANZ I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts[J]. Hepatol Commun, 2018, 2( 7): 807- 820. DOI: 10.1002/hep4.1188.
|
| [57] |
STOLS-GONÇALVES D, MAK AL, MADSEN MS, et al. Faecal Microbiota transplantation affects liver DNA methylation in non-alcoholic fatty liver disease: A multi-omics approach[J]. Gut Microbes, 2023, 15( 1): 2223330. DOI: 10.1080/19490976.2023.2223330.
|
| [58] |
LIN J, ZHANG RY, LIU HE, et al. Multi-omics analysis of the biological mechanism of the pathogenesis of non-alcoholic fatty liver disease[J]. Front Microbiol, 2024, 15: 1379064. DOI: 10.3389/fmicb.2024.1379064.
|
| [59] |
FENG G, WONG VW, TARGHER G, et al. Non-invasive tests of fibrosis in the management of MASLD: Revolutionising diagnosis, progression and regression monitoring[J]. Gut, 2025. DOI: 10.1136/gutjnl-2025-335542.
|