中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 9
Sep.  2025
Turn off MathJax
Article Contents

Pathological mechanism of multi-organ injuries in metabolic dysfunction-associated fatty liver disease

DOI: 10.12449/JCH250903
Research funding:

National Key RD Program of China (2023YFC2308104);

National Key RD Program of China (2023YFC2308100);

Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support (ZLRK202301);

National Natural Science Foundation of China (92159305)

More Information
  • Corresponding author: ZHAO Jingmin, jmzhao302@163.com (ORCID: 0000-0003-4345-2149)
  • Received Date: 2025-07-04
  • Accepted Date: 2025-08-07
  • Published Date: 2025-09-25
  • Metabolic dysfunction-associated fatty liver disease (MAFLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), have emerged as significant types of chronic liver disease worldwide and are closely associated with metabolic syndrome. The liver-extrahepatic organ/tissue axis and the “spill-over effect” of intrahepatic inflammation play pivotal roles in the pathogenesis and progression of MAFLD/MASH, significantly impacting multi-organ metabolic homeostasis and leading to various extrahepatic injuries. These include cardiovascular diseases, sarcopenia, chronic kidney disease, non-alcoholic fatty pancreas disease, polycystic ovary syndrome, hepatocellular carcinoma, and various related solid tumors. There is a notable epidemiological link between MAFLD and the development of both liver cancer and extrahepatic malignancies. The risk of associated tumorigenesis is related to multiple factors, including persistent metabolic disorders, chronic low-grade inflammation, and gut microbiota dysbiosis. Recent research perspectives have shifted from focusing solely on hepatic pathology to recognizing systemic metabolic dysregulation, emphasizing the central role of liver-extrahepatic organ interactions in disease progression. This article aims to explore the pathogenesis of MAFLD/MASH and to review the mechanisms underlying related multi-organ extrahepatic injuries.

     

  • loading
  • [1]
    SANDIREDDY R, SAKTHIVEL S, GUPTA P, et al. Systemic impacts of metabolic dysfunction-associated steatotic liver disease(MASLD) and metabolic dysfunction-associated steatohepatitis(MASH) on heart, muscle, and kidney related diseases[J]. Front Cell Dev Biol, 2024, 12: 1433857. DOI: 10.3389/fcell.2024.1433857.
    [2]
    YOUNOSSI ZM, GOLABI P, PAIK JM, et al. The global epidemiology of nonalcoholic fatty liver disease(NAFLD) and nonalcoholic steatohepatitis(NASH): A systematic review[J]. Hepatology, 2023, 77( 4): 1335- 1347. DOI: 10.1097/HEP.0000000000000004.
    [3]
    LE MH, LE DM, BAEZ TC, et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1, 201, 807 persons[J]. J Hepatol, 2023, 79( 2): 287- 295. DOI: 10.1016/j.jhep.2023.03.040.
    [4]
    CHAKRAVARTHY MV, SIDDIQUI MS, FORSGREN MF, et al. Harnessing muscle-liver crosstalk to treat nonalcoholic steatohepatitis[J]. Front Endocrinol(Lausanne), 2020, 11: 592373. DOI: 10.3389/fendo.2020.592373.
    [5]
    WANG TY, WANG RF, BU ZY, et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease[J]. Nat Rev Nephrol, 2022, 18( 4): 259- 268. DOI: 10.1038/s41581-021-00519-y.
    [6]
    NACHIT M, KWANTEN WJ, THISSEN JP, et al. Muscle fat content is strongly associated with NASH: A longitudinal study in patients with morbid obesity[J]. J Hepatol, 2021, 75( 2): 292- 301. DOI: 10.1016/j.jhep.2021.02.037.
    [7]
    FERRARA D, MONTECUCCO F, DALLEGRI F, et al. Impact of different ectopic fat depots on cardiovascular and metabolic diseases[J]. J Cell Physiol, 2019, 234( 12): 21630- 21641. DOI: 10.1002/jcp.28821.
    [8]
    CHEN L, JIANG LN, ZHAO JM. Effect of the nomenclature of non-alcoholic fatty liver disease on diagnosis and treatment of fatty liver disease concomitant with other liver diseases[J]. Chin J Hepatol, 2023, 31( 8): 805- 809. DOI: 10.3760/cma.j.cn501113-20230810-0050.

    陈林, 蒋丽娜, 赵景民. 非酒精性脂肪性肝病更名对脂肪肝合并其他肝病诊治的影响[J]. 中华肝脏病杂志, 2023, 31( 8): 805- 809. DOI: 10.3760/cma.j.cn501113-20230810-0050.
    [9]
    LI W, JIANG LN, LI ML, et al. Metabolic dysfunction-associated steatotic liver disease is associated with the risk of severe liver fibrosis in pediatric population[J]. Gastroenterol Rep, 2025, 13: goaf056. DOI: 10.1093/gastro/goaf056.
    [10]
    WANG L, WANG YJ, LIU SH, et al. Nonalcoholic fatty liver disease is associated with lower hepatitis B viral load and antiviral response in pediatric population[J]. J Gastroenterol, 2019, 54( 12): 1096- 1105. DOI: 10.1007/s00535-019-01594-6.
    [11]
    LIU F, WEI L, LEOW WQ, et al. Developing a new qFIBS model assessing histological features in pediatric patients with non-alcoholic steatohepatitis[J]. Front Med(Lausanne), 2022, 9: 925357. DOI: 10.3389/fmed.2022.925357.
    [12]
    ANSTEE QM, DARLAY R, COCKELL S, et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort[J]. J Hepatol, 2020, 73( 3): 505- 515. DOI: 10.1016/j.jhep.2020.04.003.
    [13]
    DAY CP, JAMES OFW. Steatohepatitis: A tale of two“hits”?[J]. Gastroenterology, 1998, 114( 4): 842- 845. DOI: 10.1016/S0016-5085(98)70599-2.
    [14]
    TILG H, MOSCHEN AR. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis[J]. Hepatology, 2010, 52( 5): 1836- 1846. DOI: 10.1002/hep.24001.
    [15]
    BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease(NAFLD)[J]. Metabolism, 2016, 65( 8): 1038- 1048. DOI: 10.1016/j.metabol.2015.12.012.
    [16]
    NJOKU DB, SCHILLING JD, FINCK BN. Mechanisms of nonalcoholic steatohepatitis-associated cardiomyopathy: Key roles for liver-heart crosstalk[J]. Curr Opin Lipidol, 2022, 33( 5): 295- 299. DOI: 10.1097/MOL.0000000000000845.
    [17]
    LOOMBA R, FRIEDMAN SL, SHULMAN GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184( 10): 2537- 2564. DOI: 10.1016/j.cell.2021.04.015.
    [18]
    ZHONG HX, DONG JY, ZHU LY, et al. Non-alcoholic fatty liver disease: Pathogenesis and models[J]. Am J Transl Res, 2024, 16( 2): 387- 399. DOI: 10.62347/KMSA5983.
    [19]
    CHEN P, YAO LC, YUAN MQ, et al. Mitochondrial dysfunction: A promising therapeutic target for liver diseases[J]. Genes Dis, 2024, 11( 3): 101115. DOI: 10.1016/j.gendis.2023.101115.
    [20]
    HENDERSON NC, RIEDER F, WYNN TA. Fibrosis: From mechanisms to medicines[J]. Nature, 2020, 587( 7835): 555- 566. DOI: 10.1038/s41586-020-2938-9.
    [21]
    HAMMERICH L, TACKE F. Hepatic inflammatory responses in liver fibrosis[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 10): 633- 646. DOI: 10.1038/s41575-023-00807-x.
    [22]
    HORN P, TACKE F. Metabolic reprogramming in liver fibrosis[J]. Cell Metab, 2024, 36( 7): 1439- 1455. DOI: 10.1016/j.cmet.2024.05.003.
    [23]
    PAROLA M, PINZANI M. Liver fibrosis in NAFLD/NASH: From pathophysiology towards diagnostic and therapeutic strategies[J]. Mol Aspects Med, 2024, 95: 101231. DOI: 10.1016/j.mam.2023.101231.
    [24]
    ANSTEE QM, MANTOVANI A, TILG H, et al. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol, 2018, 15( 7): 425- 439. DOI: 10.1038/s41575-018-0010-0.
    [25]
    CHOE HJ, MOON JH, KIM W, et al. Steatotic liver disease predicts cardiovascular disease and advanced liver fibrosis: A community-dwelling cohort study with 20-year follow-up[J]. Metabolism, 2024, 153: 155800. DOI: 10.1016/j.metabol.2024.155800.
    [26]
    MOON JH, JEONG S, JANG H, et al. Metabolic dysfunction-associated steatotic liver disease increases the risk of incident cardiovascular disease: A nationwide cohort study[J]. EClinicalMedicine, 2023, 65: 102292. DOI: 10.1016/j.eclinm.2023.102292.
    [27]
    TARGHER G, BYRNE CD, TILG H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications[J]. Gut, 2024, 73( 4): 691- 702. DOI: 10.1136/gutjnl-2023-330595.
    [28]
    LEE HH, LEE HA, KIM EJ, et al. Metabolic dysfunction-associated steatotic liver disease and risk of cardiovascular disease[J]. Gut, 2024, 73( 3): 533- 540. DOI: 10.1136/gutjnl-2023-331003.
    [29]
    TARGHER G, CHONCHOL M, BERTOLINI L, et al. Increased risk of CKD among type 2 diabetics with nonalcoholic fatty liver disease[J]. J Am Soc Nephrol, 2008, 19( 8): 1564- 1570. DOI: 10.1681/ASN.2007101155.
    [30]
    BYRNE CD, TARGHER G. NAFLD as a driver of chronic kidney disease[J]. J Hepatol, 2020, 72( 4): 785- 801. DOI: 10.1016/j.jhep.2020.01.013.
    [31]
    BILSON J, MANTOVANI A, BYRNE CD, et al. Steatotic liver disease, MASLD and risk of chronic kidney disease[J]. Diabetes Metab, 2024, 50( 1): 101506. DOI: 10.1016/j.diabet.2023.101506.
    [32]
    THEODORAKIS N, NIKOLAOU M. From cardiovascular-kidney-metabolic syndrome to cardiovascular-renal-hepatic-metabolic syndrome: Proposing an expanded framework[J]. Biomolecules, 2025, 15( 2): 213. DOI: 10.3390/biom15020213.
    [33]
    MONTANO-LOZA AJ, ANGULO P, MEZA-JUNCO J, et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis[J]. J Cachexia Sarcopenia Muscle, 2016, 7( 2): 126- 135. DOI: 10.1002/jcsm.12039.
    [34]
    KANG SH, YOON EL. Sarcopenic obesity, the possible culprit for nonalcoholic fatty liver disease or fibrosis[J]. Gut Liver, 2023, 17( 1): 8- 9. DOI: 10.5009/gnl220543.
    [35]
    YOSHIDA T, DELAFONTAINE P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9( 9): 1970. DOI: 10.3390/cells9091970.
    [36]
    RODRIGUEZ J, VERNUS B, CHELH I, et al. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways[J]. Cell Mol Life Sci, 2014, 71( 22): 4361- 4371. DOI: 10.1007/s00018-014-1689-x.
    [37]
    WONGTRAKUL W, UNTAAVEESUP S, PAUSAWADI N, et al. Bidirectional association between non-alcoholic fatty liver disease and fatty pancreas: A systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol, 2023, 35( 10): 1107- 1116. DOI: 10.1097/MEG.0000000000-002625.
    [38]
    TAYLOR R. The Twin Cycle Hypothesis of type 2 diabetes aetiology: From concept to national NHS programme[J]. Exp Physiol, 2025, 110( 7): 984- 991. DOI: 10.1113/EP092009.
    [39]
    RUGIVARODOM M, GEERATRAGOOL T, PAUSAWASDI N, et al. Fatty pancreas: Linking pancreas pathophysiology to nonalcoholic fatty liver disease[J]. J Clin Transl Hepatol, 2022, 10( 6): 1229- 1239. DOI: 10.14218/JCTH.2022.00085.
    [40]
    PASCHOU SA, POLYZOS SA, ANAGNOSTIS P, et al. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome[J]. Endocrine, 2020, 67( 1): 1- 8. DOI: 10.1007/s12020-019-02085-7.
    [41]
    ARVANITAKIS K, CHATZIKALIL E, KALOPITAS G, et al. Metabolic dysfunction-associated steatotic liver disease and polycystic ovary syndrome: A complex interplay[J]. J Clin Med, 2024, 13( 14): 4243. DOI: 10.3390/jcm13144243.
    [42]
    HUTCHISON AL, TAVAGLIONE F, ROMEO S, et al. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease(MASLD): Beyond insulin resistance[J]. J Hepatol, 2023, 79( 6): 1524- 1541. DOI: 10.1016/j.jhep.2023.08.030.
    [43]
    KALLIGEROS M, HENRY L, YOUNOSSI ZM. Metabolic dysfunction-associated steatotic liver disease and its link to cancer[J]. Metabolism, 2024, 160: 156004. DOI: 10.1016/j.metabol.2024.156004.
    [44]
    BEHARI J, GOUGOL A, WANG RW, et al. Incidence of hepatocellular carcinoma in nonalcoholic fatty liver disease without cirrhosis or advanced liver fibrosis[J]. Hepatol Commun, 2023, 7( 7): e00183. DOI: 10.1097/HC9.0000000000000183.
    [45]
    ALLEN AM, HICKS SB, MARA KC, et al. The risk of incident extrahepatic cancers is higher in non-alcoholic fatty liver disease than obesity- A longitudinal cohort study[J]. J Hepatol, 2019, 71( 6): 1229- 1236. DOI: 10.1016/j.jhep.2019.08.018.
    [46]
    BJÖRKSTRÖM K, WIDMAN L, HAGSTRÖM H. Risk of hepatic and extrahepatic cancer in NAFLD: A population-based cohort study[J]. Liver Int, 2022, 42( 4): 820- 828. DOI: 10.1111/liv.15195.
    [47]
    YOUNOSSI ZM, KALLIGEROS M, HENRY L. Epidemiology of metabolic dysfunction-associated steatotic liver disease[J]. Clin Mol Hepatol, 2025, 31( Suppl): S32- S50. DOI: 10.3350/cmh.2024.0431.
    [48]
    KIM GA, LEE HC, CHOE J, et al. Association between non-alcoholic fatty liver disease and cancer incidence rate[J]. J Hepatol, 2017: S0168-8278(17)32294- 8. DOI: 10.1016/j.jhep.2017.09.012.
    [49]
    ROSATO V, MASARONE M, DALLIO M, et al. NAFLD and extra-hepatic comorbidities: Current evidence on a multi-organ metabolic syndrome[J]. Int J Environ Res Public Health, 2019, 16( 18): 3415. DOI: 10.3390/ijerph16183415.
    [50]
    GALLAGHER EJ, LEROITH D. Hyperinsulinaemia in cancer[J]. Nat Rev Cancer, 2020, 20( 11): 629- 644. DOI: 10.1038/s41568-020-0295-5.
    [51]
    RENEHAN AG, FRYSTYK J, FLYVBJERG A. Obesity and cancer risk: The role of the insulin-IGF axis[J]. Trends Endocrinol Metab, 2006, 17( 8): 328- 336. DOI: 10.1016/j.tem.2006.08.006.
    [52]
    GALLAGHER EJ, LEROITH D. The proliferating role of insulin and insulin-like growth factors in cancer[J]. Trends Endocrinol Metab, 2010, 21( 10): 610- 618. DOI: 10.1016/j.tem.2010.06.007.
    [53]
    THOMAS JA, KENDALL BJ, EL-SERAG HB, et al. Hepatocellular and extrahepatic cancer risk in people with non-alcoholic fatty liver disease[J]. Lancet Gastroenterol Hepatol, 2024, 9( 2): 159- 169. DOI: 10.1016/S2468-1253(23)00275-3.
    [54]
    VIDAL-CEVALLOS P, SORROZA-MARTÍNEZ AP, CHÁVEZ-TAPIA NC, et al. The relationship between pathogenesis and possible treatments for the MASLD-cirrhosis spectrum[J]. Int J Mol Sci, 2024, 25( 8): 4397. DOI: 10.3390/ijms25084397.
    [55]
    ZHANG AMY, WELLBERG EA, KOPP JL, et al. Hyperinsulinemia in obesity, inflammation, and cancer[J]. Diabetes Metab J, 2021, 45( 3): 285- 311. DOI: 10.4093/dmj.2020.0250.
    [56]
    FANG J, YU CH, LI XJ, et al. Gut dysbiosis in nonalcoholic fatty liver disease: Pathogenesis, diagnosis, and therapeutic implications[J]. Front Cell Infect Microbiol, 2022, 12: 997018. DOI: 10.3389/fcimb.2022.997018.
    [57]
    SUN LL, CAI J, GONZALEZ FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 5): 335- 347. DOI: 10.1038/s41575-020-00404-2.
    [58]
    TAI J, HSU CW, CHEN WT, et al. Association of liver fibrosis with extrahepatic cancer in steatotic liver disease patients with PNPLA3 I148M GG genotype[J]. Cancer Sci, 2024, 115( 2): 564- 574. DOI: 10.1111/cas.16042.
    [59]
    LUO F, OLDONI F, DAS A. TM6SF2: A novel genetic player in nonalcoholic fatty liver and cardiovascular disease[J]. Hepatol Commun, 2022, 6( 3): 448- 460. DOI: 10.1002/hep4.1822.
    [60]
    del CAMPO JA, GALLEGO-DURÁN R, GALLEGO P, et al. Genetic and epigenetic regulation in nonalcoholic fatty liver disease(NAFLD)[J]. Int J Mol Sci, 2018, 19( 3): 911. DOI: 10.3390/ijms19030911.
    [61]
    YOUNOSSI ZM, HENRY L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma[J]. JHEP Rep, 2021, 3( 4): 100305. DOI: 10.1016/j.jhepr.2021.100305.
    [62]
    VITALE A, SVEGLIATI-BARONI G, ORTOLANI A, et al. Epidemiological trends and trajectories of MAFLD-associated hepatocellular carcinoma 2002-2033: The ITA.LI.CA database[J]. Gut, 2023, 72( 1): 141- 152. DOI: 10.1136/gutjnl-2021-324915.
    [63]
    HUANG DQ, EL-SERAG HB, LOOMBA R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 4): 223- 238. DOI: 10.1038/s41575-020-00381-6.
    [64]
    ORCI LA, SANDUZZI-ZAMPARELLI M, CABALLOL B, et al. Incidence of hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: A systematic review, meta-analysis, and meta-regression[J]. Clin Gastroenterol Hepatol, 2022, 20( 2): 283- 292. e 10. DOI: 10.1016/j.cgh.2021.05.002.
    [65]
    WONGJARUPONG N, ASSAVAPONGPAIBOON B, SUSANTITAPHONG P, et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: A systematic review and meta-analysis[J]. BMC Gastroenterol, 2017, 17( 1): 149. DOI: 10.1186/s12876-017-0696-4.
    [66]
    YU QS, LEI ZQ, MA WH, et al. Postoperative prognosis of non-alcoholic fatty liver disease-associated intrahepatic cholangiocarcinoma: A multi-center propensity score matching analysis[J]. J Gastrointest Surg, 2023, 27( 11): 2403- 2413. DOI: 10.1007/s11605-023-05794-7.
    [67]
    YOUNOSSI ZM, STEPANOVA M, ONG J, et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States[J]. Clin Gastroenterol Hepatol, 2021, 19( 3): 580- 589.e5. DOI: 10.1016/j.cgh.2020.05.064.
    [68]
    CHETTOUH H, LEQUOY M, FARTOUX L, et al. Hyperinsulinaemia and insulin signalling in the pathogenesis and the clinical course of hepatocellular carcinoma[J]. Liver Int, 2015, 35( 10): 2203- 2217. DOI: 10.1111/liv.12903.
    [69]
    GUO WP, ZHANG HY, LIU LX. Risk factors of hepatocellular carcinoma in non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur Rev Med Pharmacol Sci, 2023, 27( 24): 11890- 11903. DOI: 10.26355/eurrev_202312_34788.
    [70]
    GELLERT-KRISTENSEN H, RICHARDSON TG, DAVEY SMITH G, et al. Combined effect of PNPLA3, TM6SF2, and HSD17B13 variants on risk of cirrhosis and hepatocellular carcinoma in the general population[J]. Hepatology, 2020, 72( 3): 845- 856. DOI: 10.1002/hep.31238.
    [71]
    IOANNOU GN. Epidemiology and risk-stratification of NAFLD-associated HCC[J]. J Hepatol, 2021, 75( 6): 1476- 1484. DOI: 10.1016/j.jhep.2021.08.012.
    [72]
    EBRAHIMI F, HAGSTRÖM H, SUN JW, et al. Familial coaggregation of MASLD with hepatocellular carcinoma and adverse liver outcomes: Nationwide multigenerational cohort study[J]. J Hepatol, 2023, 79( 6): 1374- 1384. DOI: 10.1016/j.jhep.2023.08.018.
    [73]
    MANTOVANI A, DAURIZ M, BYRNE CD, et al. Association between nonalcoholic fatty liver disease and colorectal tumours in asymptomatic adults undergoing screening colonoscopy: A systematic review and meta-analysis[J]. Metabolism, 2018, 87: 1- 12. DOI: 10.1016/j.metabol.2018.06.004.
    [74]
    CHEN WX, WANG MQ, JING XB, et al. High risk of colorectal polyps in men with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. J Gastroenterol Hepatol, 2020, 35( 12): 2051- 2065. DOI: 10.1111/jgh.15158.
    [75]
    MANTOVANI A, PETRACCA G, BEATRICE G, et al. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: A meta-analysis of observational cohort studies[J]. Gut, 2022, 71( 4): 778- 788. DOI: 10.1136/gutjnl-2021-324191.
    [76]
    KHAN MZI, UZAIR M, NAZLI A, et al. An overview on Estrogen receptors signaling and its ligands in breast cancer[J]. Eur J Med Chem, 2022, 241: 114658. DOI: 10.1016/j.ejmech.2022.114658.
    [77]
    QIAN L, ZHANG F, YIN M, et al. Cancer metabolism and dietary interventions[J]. Cancer Biol Med, 2021, 19( 2): 163- 174. DOI: 10.20892/j.issn.2095-3941.2021.0461.
    [78]
    THOMAS JA, KENDALL BJ, DALAIS C, et al. Hepatocellular and extrahepatic cancers in non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur J Cancer, 2022, 173: 250- 262. DOI: 10.1016/j.ejca.2022.06.051.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (213) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return