中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

Application of chimeric antigen receptor T-cell immunotherapy in primary liver cancer

DOI: 10.3969/j.issn.1001-5256.2022.10.036
Research funding:

National Natural Science Foundation of China (82170667);

National Natural Science Foundation of China (81970566)

More Information
  • Corresponding author: TAO Kaishan, taokaishan0686@163.com(ORCID: 0000-0002-6038-4136)
  • Received Date: 2022-03-05
  • Accepted Date: 2022-04-07
  • Published Date: 2022-10-20
  • Primary liver cancer has the features of high malignancy, rapid progression, frequent recurrence/metastasis, and high mortality, and therefore, most patients have developed intrahepatic or extrahepatic metastasis when attending the hospital and thus lost the opportunity for surgical treatment. Chimeric antigen receptor T-cell (CAR-T) immunotherapy has achieved good efficacy in the treatment of B-cell acute lymphoblastic leukemia, and clinical trials have been initiated to explore its applications in solid tumors such as primary liver cancer, pancreatic cancer, gastric cancer, and prostate cancer. This article reviews the efficacy of CAR-T immunotherapy in the clinical trials for primary liver cancer and discusses the difficult issues that need to be solved in clinical practice, such as the lack of suitable tumor targets, the inhibitory effect of tumor microenvironment on CAR-T cells, and the poor infiltration of CAR-T cells in tumor tissue, so as to provide a reference for related clinical studies.

     

  • loading
  • [1]
    LLOVET JM, ZUCMAN-ROSSI J, PIKARSKY E, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2016, 2: 16018. DOI: 10.1038/nrdp.2016.18.
    [2]
    SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
    [3]
    DEMIR T, LEE SS, KASEB AO. Systemic therapy of liver cancer[J]. Adv Cancer Res, 2021, 149: 257-294. DOI: 10.1016/bs.acr.2020.12.001.
    [4]
    ZHONG JH, LI H, LI LQ, et al. Adjuvant therapy options following curative treatment of hepatocellular carcinoma: a systematic review of randomized trials[J]. Eur J Surg Oncol, 2012, 38(4): 286-295. DOI: 10.1016/j.ejso.2012.01.006.
    [5]
    LLOVET JM, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(4): 378-390. DOI: 10.1056/NEJMoa0708857.
    [6]
    GALON J, BRUNI D. Tumor immunology and tumor evolution: Intertwined histories[J]. Immunity, 2020, 52(1): 55-81. DOI: 10.1016/j.immuni.2019.12.018.
    [7]
    WALL DA, KRUEGER J. Chimeric antigen receptor T cell therapy comes to clinical practice[J]. Curr Oncol, 2020, 27(Suppl 2): s115-s123. DOI: 10.3747/co.27.5283.
    [8]
    HOSEN N. Chimeric antigen receptor T-cell therapy for multiple myeloma[J]. Int J Hematol, 2020, 111(4): 530-534. DOI: 10.1007/s12185-020-02827-8.
    [9]
    ROSELLI E, FARAMAND R, DAVILA ML. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes[J]. J Clin Invest, 2021, 131(2): e142030. DOI: 10.1172/JCI142030.
    [10]
    KIM DW, CHO JY. Recent advances in allogeneic CAR-T cells[J]. Biomolecules, 2020, 10(2): 263. DOI: 10.3390/biom10020263.
    [11]
    ABRAMSON JS, MCGREE B, NOYES S, et al. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma[J]. N Engl J Med, 2017, 377(8): 783-784. DOI: 10.1056/NEJMc1704610.
    [12]
    O'ROURKE DM, NASRALLAH MP, DESAI A, et al. A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]. Sci Transl Med, 2017, 9(399): eaaa0984. DOI: 10.1126/scitranslmed.aaa0984.
    [13]
    CADILHA BL, BENMEBAREK MR, DORMAN K, et al. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors[J]. Sci Adv, 2021, 7(24): eabi5781. DOI: 10.1126/sciadv.abi5781.
    [14]
    WEI J, GUO Y, WANG Y, et al. Clinical development of CAR T cell therapy in China: 2020 update[J]. Cell Mol Immunol, 2021, 18(4): 792-804. DOI: 10.1038/s41423-020-00555-x.
    [15]
    WANG Y, CHEN M, WU Z, et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial[J]. Oncoimmunology, 2018, 7(7): e1440169. DOI: 10.1080/2162402X.2018.1440169.
    [16]
    SHI D, SHI Y, KASEB AO, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: Results of phase I trials[J]. Clin Cancer Res, 2020, 26(15): 3979-3989. DOI: 10.1158/1078-0432.CCR-19-3259.
    [17]
    LIU H, XU Y, XIANG J, et al. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer[J]. Clin Cancer Res, 2017, 23(2): 478-488. DOI: 10.1158/1078-0432.CCR-16-1203.
    [18]
    LIM WA, JUNE CH. The principles of engineering immune cells to treat cancer[J]. Cell, 2017, 168(4): 724-740. DOI: 10.1016/j.cell.2017.01.016.
    [19]
    di STASI A, de ANGELIS B, ROONEY CM, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model[J]. Blood, 2009, 113(25): 6392-6402. DOI: 10.1182/blood-2009-03-209650.
    [20]
    ZHANG RY, WEI D, LIU ZK, et al. Doxycycline inducible chimeric antigen receptor T cells targeting CD147 for hepatocellular carcinoma therapy[J]. Front Cell Dev Biol, 2019, 7: 233. DOI: 10.3389/fcell.2019.00233.
    [21]
    WANG JY, WANG XK, ZHU GZ, et al. Distinct diagnostic and prognostic values of Glypicans gene expression in patients with hepatocellular carcinoma[J]. BMC Cancer, 2021, 21(1): 462. DOI: 10.1186/s12885-021-08104-z.
    [22]
    THISTLETHWAITE FC, GILHAM DE, GUEST RD, et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity[J]. Cancer Immunol Immunother, 2017, 66(11): 1425-1436. DOI: 10.1007/s00262-017-2034-7.
    [23]
    WANG SJ, CHAO D, WEI W, et al. CD147 promotes collective invasion through cathepsin B in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 145. DOI: 10.1186/s13046-020-01647-2.
    [24]
    BIAN H, ZHENG JS, NAN G, et al. Randomized trial of[131I] metuximab in treatment of hepatocellular carcinoma after percutaneous radiofrequency ablation[J]. J Natl Cancer Inst, 2014, 106(9): dju239. DOI: 10.1093/jnci/dju239.
    [25]
    CHEN C, LI K, JIANG H, et al. Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2017, 66(4): 475-489. DOI: 10.1007/s00262-016-1949-8.
    [26]
    TANG XY, DING YS, ZHOU T, et al. Tumor-tagging by oncolytic viruses: A novel strategy for CAR-T therapy against solid tumors[J]. Cancer Lett, 2021, 503: 69-74. DOI: 10.1016/j.canlet.2021.01.014.
    [27]
    MIKUCKI ME, FISHER DT, MATSUZAKI J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints[J]. Nat Commun, 2015, 6: 7458. DOI: 10.1038/ncomms8458.
    [28]
    ADACHI K, KANO Y, NAGAI T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor[J]. Nat Biotechnol, 2018, 36(4): 346-351. DOI: 10.1038/nbt.4086.
    [29]
    CHEN Y, YU Z, TAN X, et al. CAR-macrophage: A new immunotherapy candidate against solid tumors[J]. Biomed Pharmacother, 2021, 139: 111605. DOI: 10.1016/j.biopha.2021.111605.
    [30]
    WANG LC, LO A, SCHOLLER J, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity[J]. Cancer Immunol Res, 2014, 2(2): 154-166. DOI: 10.1158/2326-6066.CIR-13-0027.
    [31]
    EGGERT T, GRETEN TF. Tumor regulation of the tissue environment in the liver[J]. Pharmacol Ther, 2017, 173: 47-57. DOI: 10.1016/j.pharmthera.2017.02.005.
    [32]
    MENG X, XU Y, NING X. Tumor microenvironment acidity modulates ROR1 to promote epithelial-mesenchymal transition and hepatocarcinoma metastasis[J]. J Cell Sci, 2021, 134(7): jcs255349. DOI: 10.1242/jcs.255349.
    [33]
    de HENAU O, RAUSCH M, WINKLER D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells[J]. Nature, 2016, 539(7629): 443-447. DOI: 10.1038/nature20554.
    [34]
    HÖCHST B, SCHILDBERG FA, BÖTTCHER J, et al. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice[J]. Hepatology, 2012, 56(5): 1924-1933. DOI: 10.1002/hep.25844.
    [35]
    SACHDEVA M, DUCHATEAU P, DEPIL S, et al. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators[J]. J Biol Chem, 2019, 294(14): 5430-5437. DOI: 10.1074/jbc.AC119.007558.
    [36]
    NORELLI M, CAMISA B, BARBIERA G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells[J]. Nat Med, 2018, 24(6): 739-748. DOI: 10.1038/s41591-018-0036-4.
    [37]
    GUPTA S, SEETHAPATHY H, STROHBEHN IA, et al. Acute kidney injury and electrolyte abnormalities after chimeric antigen receptor T-cell (CAR-T) therapy for diffuse large B-cell lymphoma[J]. Am J Kidney Dis, 2020, 76(1): 63-71. DOI: 10.1053/j.ajkd.2019.10.011.
    [38]
    HARIRI G, JOFFRE J, DERYCKERE S, et al. Albumin infusion improves endothelial function in septic shock patients: a pilot study[J]. Intensive Care Med, 2018, 44(5): 669-671. DOI: 10.1007/s00134-018-5075-2.
    [39]
    MACKALL CL, MIKLOS DB. CNS endothelial cell activation emerges as a driver of CAR T cell-associated neurotoxicity[J]. Cancer Discov, 2017, 7(12): 1371-1373. DOI: 10.1158/2159-8290.CD-17-1084.
    [40]
    LEE DW, SANTOMASSO BD, LOCKE FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells[J]. Biol Blood Marrow Transplant, 2019, 25(4): 625-638. DOI: 10.1016/j.bbmt.2018.12.758.
    [41]
    VARADARAJAN I, LEE DW. Management of T-cell engaging immunotherapy complications[J]. Cancer J, 2019, 25(3): 223-230. DOI: 10.1097/PPO.0000000000000377.
    [42]
    CAO JX, WANG H, GAO WJ, et al. The incidence of cytokine release syndrome and neurotoxicity of CD19 chimeric antigen receptor-T cell therapy in the patient with acute lymphoblastic leukemia and lymphoma[J]. Cytotherapy, 2020, 22(4): 214-226. DOI: 10.1016/j.jcyt.2020.01.015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (396) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return