中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

Recent research progress and mechanisms on Traditional Chinese Medicine reversal therapy of liver fibrosis

DOI: 10.3969/j.issn.1001-5256.2022.10.033
Research funding:

Hebei Province Medical Technology, Tracking, and Application Project (G2018041)

More Information
  • Corresponding author: ZHANG Yuguo, 15930173200@126.com(ORCID: 0000-0001-7220-2814)
  • Received Date: 2022-03-11
  • Accepted Date: 2022-04-29
  • Published Date: 2022-10-20
  • Liver fibrosis occurs due to damages caused by liver diseases of various etiologies and activation of hepatic stellate cells, leading to the repairing and damaging cycle by secreting a large amount of extracellular matrix and formation of fibrosis tissues in the liver. Early reversal of this process could prevent further development and progression of the disease, which may reduce incidence of the end-stage liver disease and even liver cancer. This review summarized and discussed recent advancements and mechanisms of liver sinusoidal endothelial cells, Notch signaling pathway, YAP/TAZ signaling pathway, and autophagy in regulation of liver fibrosis and then enumerated the Traditional Chinese Medicine in reversal of liver fibrosis process and the underlying molecular mechanisms. It expects to provide novel approaches and research ideas for future control of liver fibrosis using Traditional Chinese Medicine.

     

  • loading
  • [1]
    DEWIDAR B, MEYER C, DOOLEY S, et al. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019[J]. Cells, 2019, 8(11): 1419. DOI: 10.3390/cells8111419.
    [2]
    HIGASHI T, FRIEDMAN SL, HOSHIDA Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27-42. DOI: 10.1016/j.addr.2017.05.007.
    [3]
    ZHANG YZ, YAO JN, ZHANG LF, et al. Effect of NLRC5 on activation and reversion of hepatic stellate cells by regulating the nuclear factor-κB signaling pathway[J]. World J Gastroenterol, 2019, 25(24): 3044-3055. DOI: 10.3748/wjg.v25.i24.3044.
    [4]
    MIYAO M, KOTANI H, ISHIDA T, et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression[J]. Lab Invest, 2015, 95(10): 1130-1144. DOI: 10.1038/labinvest.2015.95.
    [5]
    POISSON J, LEMOINNE S, BOULANGER C, et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases[J]. J Hepatol, 2017, 66(1): 212-227. DOI: 10.1016/j.jhep.2016.07.009.
    [6]
    WANG R, DING Q, YAQOOB U, et al. Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration[J]. J Biol Chem, 2015, 290(52): 30684-30696. DOI: 10.1074/jbc.M115.671735.
    [7]
    XIE G, WANG X, WANG L, et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats[J]. Gastroenterology, 2012, 142(4): 918-927. e6. DOI: 10.1053/j.gastro.2011.12.017.
    [8]
    MA H, LIU X, ZHANG M, et al. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms[J]. Mol Biol Rep, 2021, 48(3): 2803-2815. DOI: 10.1007/s11033-021-06269-1.
    [9]
    ZHANG F, HAO M, JIN H, et al. Canonical hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis[J]. Br J Pharmacol, 2017, 174(5): 409-423. DOI: 10.1111/bph.13701.
    [10]
    XIAO Z, JI Q, FU YD, et al. Amygdalin ameliorates liver fibrosis through inhibiting activation of TGF-β/Smad signaling[J]. Chin J Integr Med, 2021. DOI: 10.1007/s11655-021-3304-y.[Online ahead of print]
    [11]
    YANG X, WANG Z, KAI J, et al. Curcumol attenuates liver sinusoidal endothelial cell angiogenesis via regulating Glis-PROX1-HIF-1α in liver fibrosis[J]. Cell Prolif, 2020, 53(3): e12762. DOI: 10.1111/cpr.12762.
    [12]
    XI S, SHI M, JIANG X, et al. The effects of Tao-Hong-Si-Wu on hepatic necroinflammatory activity and fibrosis in a murine model of chronic liver disease[J]. J Ethnopharmacol, 2016, 180: 28-36. DOI: 10.1016/j.jep.2016.01.030.
    [13]
    SIEBEL C, LENDAHL U. Notch signaling in development, tissue homeostasis, and disease[J]. Physiol Rev, 2017, 97(4): 1235-1294. DOI: 10.1152/physrev.00005.2017.
    [14]
    ANDERSSON ER, SANDBERG R, LENDAHL U. Notch signaling: simplicity in design, versatility in function[J]. Development, 2011, 138(17): 3593-3612. DOI: 10.1242/dev.063610.
    [15]
    NI MM, WANG YR, WU WW, et al. Novel insights on notch signaling pathways in liver fibrosis[J]. Eur J Pharmacol, 2018, 826: 66-74. DOI: 10.1016/j.ejphar.2018.02.051.
    [16]
    YANG YM, NOUREDDIN M, LIU C, et al. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis[J]. Sci Transl Med, 2019, 11(496): eaat9284. DOI: 10.1126/scitranslmed.aat9284.
    [17]
    DUAN JL, RUAN B, YAN XC, et al. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice[J]. Hepatology, 2018, 68(2): 677-690. DOI: 10.1002/hep.29834.
    [18]
    AIMAITI Y, YUSUFUKADIER M, LI W, et al. TGF-β1 signaling activates hepatic stellate cells through Notch pathway[J]. Cytotechnology, 2019, 71(5): 881-891. DOI: 10.1007/s10616-019-00329-y.
    [19]
    WANG Y, SHEN RW, HAN B, et al. Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats[J]. World J Gastroenterol, 2017, 23(13): 2330-2336. DOI: 10.3748/wjg.v23.i13.2330.
    [20]
    HUANG F, ZHAO JL, WANG L, et al. miR-148a-3p mediates notch signaling to promote the differentiation and m1 activation of macrophages[J]. Front Immunol, 2017, 8: 1327. DOI: 10.3389/fimmu.2017.01327.
    [21]
    PAGIE S, GÉRARD N, CHARREAU B. Notch signaling triggered via the ligand DLL4 impedes M2 macrophage differentiation and promotes their apoptosis[J]. Cell Commun Signal, 2018, 16(1): 4. DOI: 10.1186/s12964-017-0214-x.
    [22]
    XU H, ZHU J, SMITH S, et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization[J]. Nat Immunol, 2012, 13(7): 642-650. DOI: 10.1038/ni.2304.
    [23]
    KIMBALL AS, JOSHI AD, BONIAKOWSKI AE, et al. Notch regulates macrophage-mediated inflammation in diabetic wound healing[J]. Front Immunol, 2017, 8: 635. DOI: 10.3389/fimmu.2017.00635.
    [24]
    SHENG J, ZHANG B, CHEN Y, et al. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages[J]. Immunopharmacol Immunotoxicol, 2020, 42(6): 556-563. DOI: 10.1080/08923973.2020.1811308.
    [25]
    LI X, JIN Q, YAO Q, et al. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice[J]. Front Pharmacol, 2018, 9: 72. DOI: 10.3389/fphar.2018.00072.
    [26]
    ZHANG X, XU Y, CHEN JM, et al. Huang Qi decoction prevents BDL-induced liver fibrosis through inhibition of notch signaling activation[J]. Am J Chin Med, 2017, 45(1): 85-104. DOI: 10.1142/S0192415X17500070.
    [27]
    TANRIVERDI G, KAYA-DAGISTANLI F, AYLA S, et al. Resveratrol can prevent CCl4-induced liver injury by inhibiting Notch signaling pathway[J]. Histol Histopathol, 2016, 31(7): 769-784. DOI: 10.14670/HH-11-720.
    [28]
    HENG BC, ZHANG X, AUBEL D, et al. An overview of signaling pathways regulating YAP/TAZ activity[J]. Cell Mol Life Sci, 2021, 78(2): 497-512. DOI: 10.1007/s00018-020-03579-8.
    [29]
    VARELAS X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease[J]. Development, 2014, 141(8): 1614-1626. DOI: 10.1242/dev.102376.
    [30]
    YU HX, YAO Y, BU FT, et al. Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells[J]. Mol Immunol, 2019, 107: 29-40. DOI: 10.1016/j.molimm.2019.01.004.
    [31]
    QING J, REN Y, ZHANG Y, et al. Dopamine receptor D2 antagonism normalizes profibrotic macrophage-endothelial crosstalk in non-alcoholic steatohepatitis[J]. J Hepatol, 2022, 76(2): 394-406. DOI: 10.1016/j.jhep.2021.09.032.
    [32]
    WANG X, ZHENG Z, CAVIGLIA JM, et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis[J]. Cell Metab, 2016, 24(6): 848-862. DOI: 10.1016/j.cmet.2016.09.016.
    [33]
    MOORING M, FOWL BH, LUM S, et al. Hepatocyte stress increases expression of yes-associated protein and transcriptional coactivator With PDZ-Binding motif in hepatocytes to promote parenchymal inflammation and fibrosis[J]. Hepatology, 2020, 71(5): 1813-1830. DOI: 10.1002/hep.30928.
    [34]
    ZHAO W, ZHANG X, HOU M, et al. Traditional Chinese medicine Yiqi Huoxue recipe attenuates hepatic fibrosis via YAP/TAZ signaling[J]. Histol Histopathol, 2021, 36(9): 967-979. DOI: 10.14670/HH-18-373.
    [35]
    LEE EH, BAEK SY, PARK JY, et al. Emodin in Rheum undulatum inhibits oxidative stress in the liver via AMPK with Hippo/Yap signalling pathway[J]. Pharm Biol, 2020, 58(1): 333-341. DOI: 10.1080/13880209.2020.1750658.
    [36]
    LEE EH, PARK KI, KIM KY, et al. Liquiritigenin inhibits hepatic fibrogenesis and TGF-β1/Smad with Hippo/YAP signal[J]. Phytomedicine, 2019, 62: 152780. DOI: 10.1016/j.phymed.2018.12.003.
    [37]
    GE M, LIU H, ZHANG Y, et al. The anti-hepatic fibrosis effects of dihydrotanshinone I are mediated by disrupting the yes-associated protein and transcriptional enhancer factor D2 complex and stimulating autophagy[J]. Br J Pharmacol, 2017, 174(10): 1147-1160. DOI: 10.1111/bph.13766.
    [38]
    LOOS B, ENGELBRECHT AM, LOCKSHIN RA, et al. The variability of autophagy and cell death susceptibility: Unanswered questions[J]. Autophagy, 2013, 9(9): 1270-1285. DOI: 10.4161/auto.25560.
    [39]
    DAI QL, LIU SN. Role of autophagy in liver fibrosis[J]. J Clin Hepatol, 2021, 37(6): 1440-1444. DOI: 10.3969/j.issn.1001-5256.2021.06.046.

    代倩兰, 刘绍能. 细胞自噬及其在肝纤维化中的作用[J]. 临床肝胆病杂志, 2021, 37(6): 1440-1444. DOI: 10.3969/j.issn.1001-5256.2021.06.046.
    [40]
    LIU Y, WU X, WANG Y, et al. Endoplasmic reticulum stress and autophagy are involved in adipocyte-induced fibrosis in hepatic stellate cells[J]. Mol Cell Biochem, 2021, 476(6): 2527-2538. DOI: 10.1007/s11010-020-03990-6.
    [41]
    DING N, YU RT, SUBRAMANIAM N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response[J]. Cell, 2013, 153(3): 601-613. DOI: 10.1016/j.cell.2013.03.028.
    [42]
    DURAN A, HERNANDEZ ED, REINA-CAMPOS M, et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer[J]. Cancer Cell, 2016, 30(4): 595-609. DOI: 10.1016/j.ccell.2016.09.004.
    [43]
    RUART M, CHAVARRIA L, CAMPRECIÓS G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury[J]. J Hepatol, 2019, 70(3): 458-469. DOI: 10.1016/j.jhep.2018.10.015.
    [44]
    SUN K, XU L, JING Y, et al. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-κB-IL1α/β-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis[J]. Cancer Lett, 2017, 388: 198-207. DOI: 10.1016/j.canlet.2016.12.004.
    [45]
    JIANG H, ZHANG JF, GAO JR, et al. Effect of Shugan Jianpi recipe on autophagy protein Beclin-1 and LC3-Ⅱ in hepatic fibrosis rats[J]. Chin J Integr Trad West Med, 2017, 37(8): 955-960. DOI: 10.7661/j.cjim.20170614.139.

    姜辉, 张家富, 高家荣, 等. 疏肝健脾方对肝纤维化大鼠自噬蛋白Beclin-1和LC3-Ⅱ的影响[J]. 中国中西医结合杂志, 2017, 37(8): 955-960. DOI: 10.7661/j.cjim.20170614.139.
    [46]
    XIA Y, LI J, CHEN K, et al. Bergenin attenuates hepatic fibrosis by regulating autophagy mediated by the PPAR-γ/TGF-β pathway[J]. PPAR Res, 2020, 2020: 6694214. DOI: 10.1155/2020/6694214.
    [47]
    KONG D, ZHANG Z, CHEN L, et al. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy[J]. Redox Biol, 2020, 36: 101600. DOI: 10.1016/j.redox.2020.101600.
    [48]
    OUYANG Y, XU KY, SU XQ, et al. Role of autophagy in liver fibrosis with qi deficiency and blood stasis via the Nrf2-Keap1-Are signaling pathway[J]. Chin J Integr Tradit West Med Liver Dis, 2020, 30(4): 333-336, 386. DOI: 10.3969/j.issn.1005-0264.2020.04.014.

    欧阳媛, 徐渴阳, 苏晓倩, 等. 扶正化瘀胶囊对气虚血瘀型肝纤维化大鼠Nrf2-Keap1-Are信号通路的影响[J]. 中西医结合肝病杂志, 2020, 30(4): 333-336, 386. DOI: 10.3969/j.issn.1005-0264.2020.04.014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (491) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return