中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

Association between the sirtuin family of deacetylases and nonalcoholic fatty liver disease

DOI: 10.3969/j.issn.1001-5256.2022.10.030
Research funding:

National Natural Science Foundation of China (U1504825);

Scientific Research Special Project of Henan Administration of TCM (2021JDZY003);

Henan TCM Top-Notch Talent Program (2021-15)

More Information
  • Corresponding author: LIU Jiangkai, 13592553982@126.com(ORCID: 0000-0002-1529-5089)
  • Received Date: 2022-03-03
  • Accepted Date: 2022-04-05
  • Published Date: 2022-10-20
  • The sirtuin family of deacetylases widely exists in human cells and can regulate the post-translational chemical modification of various proteins by acting on mitochondria, endoplasmic reticulum and nucleus, thereby influencing the process of biological metabolism. The sirtuin family is also involved in a variety of pathophysiological reactions in nonalcoholic fatty liver disease (NAFLD). This article reviews the research advances in the association between the sirtuin family of deacetylases and nonalcoholic fatty liver disease, so as to provide a potential approach for NAFLD treatment in the future.

     

  • loading
  • [1]
    LAZARUS JV, MARK HE, ANSTEE QM, et al. Advancing the global public health agenda for NAFLD: a consensus statement[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(1): 60-78. DOI: 10.1038/s41575-021-00523-4.
    [2]
    YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
    [3]
    ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702.
    [4]
    SHAPIRO WL, NOON SL, SCHWIMMER JB. Recent advances in the epidemiology of nonalcoholic fatty liver disease in children[J]. Pediatr Obes, 2021, 16(11): e12849. DOI: 10.1111/ijpo.12849.
    [5]
    WANG CE, XU WT, GONG J, et al. Research progress in treatment of nonalcoholic fatty liver disease[J]. Chin J Med Offic, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.

    王彩娥, 许文涛, 宫建, 等. 非酒精性脂肪性肝病治疗研究进展[J]. 临床军医杂志, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
    [6]
    FINKEL T, DENG CX, MOSTOSLAVSKY R. Recent progress in the biology and physiology of sirtuins[J]. Nature, 2009, 460(7255): 587-591. DOI: 10.1038/nature08197.
    [7]
    HIRSCHEY MD, ZHAO Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation[J]. Mol Cell Proteomics, 2015, 14(9): 2308-2315. DOI: 10.1074/mcp.R114.046664.
    [8]
    KUPIS W, PAŁYGA J, TOMAL E, et al. The role of sirtuins in cellular homeostasis[J]. J Physiol Biochem, 2016, 72(3): 371-380. DOI: 10.1007/s13105-016-0492-6.
    [9]
    CARAFA V, ROTILI D, FORGIONE M, et al. Sirtuin functions and modulation: from chemistry to the clinic[J]. Clin Epigenetics, 2016, 8: 61. DOI: 10.1186/s13148-016-0224-3.
    [10]
    SANTOS L, ESCANDE C, DENICOLA A. Potential modulation of sirtuins by oxidative stress[J]. Oxid Med Cell Longev, 2016, 2016: 9831825. DOI: 10.1155/2016/9831825.
    [11]
    AVILKINA V, CHAUVEAU C, GHALI MHENNI O. Sirtuin function and metabolism: Role in pancreas, liver, and adipose tissue and their crosstalk impacting bone homeostasis[J]. Bone, 2022, 154: 116232. DOI: 10.1016/j.bone.2021.116232.
    [12]
    BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
    [13]
    SCORLETTI E, CARR RM. A new perspective on NAFLD: Focusing on lipid droplets[J]. J Hepatol, 2022, 76(4): 934-945. DOI: 10.1016/j.jhep.2021.11.009.
    [14]
    ALVES-BEZERRA M, COHEN DE. Triglyceride metabolism in the liver[J]. Compr Physiol, 2017, 8(1): 1-8. DOI: 10.1002/cphy.c170012.
    [15]
    PURUSHOTHAM A, SCHUG TT, XU Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation[J]. Cell Metab, 2009, 9(4): 327-338. DOI: 10.1016/j.cmet.2009.02.006.
    [16]
    GOETZMAN ES, BHARATHI SS, ZHANG Y, et al. Impaired mitochondrial medium-chain fatty acid oxidation drives periportal macrovesicular steatosis in sirtuin-5 knockout mice[J]. Sci Rep, 2020, 10(1): 18367. DOI: 10.1038/s41598-020-75615-3.
    [17]
    LI SW, TAKAHARA T, QUE W, et al. Hydrogen-rich water protects against liver injury in nonalcoholic steatohepatitis through HO-1 enhancement via IL-10 and Sirt 1 signaling[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G450-G463. DOI: 10.1152/ajpgi.00158.2020.
    [18]
    FORTE TM, RYAN RO. Apolipoprotein A5: Extracellular and intracellular roles in triglyceride metabolism[J]. Curr Drug Targets, 2015, 16(12): 1274-1280. DOI: 10.2174/1389450116666150531161138.
    [19]
    XING D, WANG B, LU H, et al. Sirtuin 3 restores synthesis and secretion of very low-density lipoproteins in cow hepatocytes challenged with nonesterified fatty acids in vitro[J]. Vet Sci, 2021, 8(7): 121. DOI: 10.3390/vetsci8070121.
    [20]
    ZHU C, HUANG M, KIM HG, et al. SIRT6 controls hepatic lipogenesis by suppressing LXR, ChREBP, and SREBP1[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12): 166249. DOI: 10.1016/j.bbadis.2021.166249.
    [21]
    SATHYANARAYAN A, MASHEK MT, MASHEK DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism[J]. Cell Rep, 2017, 19(1): 1-9. DOI: 10.1016/j.celrep.2017.03.026.
    [22]
    DONG Z, XIE X, SUN Y, et al. Paeonol prevents lipid metabolism dysfunction in palmitic acid-induced HepG2 injury through promoting SIRT1-FoxO1-ATG14-dependent autophagy[J]. Eur J Pharmacol, 2020, 880: 173145. DOI: 10.1016/j.ejphar.2020.173145.
    [23]
    ZHANG T, LIU J, SHEN S, et al. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity[J]. Cell Death Differ, 2020, 27(1): 329-344. DOI: 10.1038/s41418-019-0356-z.
    [24]
    PETERSEN MC, SHULMAN GI. Mechanisms of insulin action and insulin resistance[J]. Physiol Rev, 2018, 98(4): 2133-2223. DOI: 10.1152/physrev.00063.2017.
    [25]
    YARIBEYGI H, FARROKHI FR, BUTLER AE, et al. Insulin resistance: Review of the underlying molecular mechanisms[J]. J Cell Physiol, 2019, 234(6): 8152-8161. DOI: 10.1002/jcp.27603.
    [26]
    WANG A, LI T, AN P, et al. Exendin-4 upregulates adiponectin level in adipocytes via Sirt1/Foxo-1 signaling pathway[J]. PLoS One, 2017, 12(1): e0169469. DOI: 10.1371/journal.pone.0169469.
    [27]
    JUNG TW, LEE KT, LEE MW, et al. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150[J]. Biochem Biophys Res Commun, 2012, 422(2): 229-232. DOI: 10.1016/j.bbrc.2012.04.129.
    [28]
    CAO Y, JIANG X, MA H, et al. SIRT1 and insulin resistance[J]. J Diabetes Complications, 2016, 30(1): 178-183. DOI: 10.1016/j.jdiacomp.2015.08.022.
    [29]
    WU SY, LIANG J, YANG BC, et al. SIRT1 activation promotes β-Cell regeneration by activating endocrine progenitor cells via AMPK signaling-mediated fatty acid oxidation[J]. Stem Cells, 2019, 37(11): 1416-1428. DOI: 10.1002/stem.3073.
    [30]
    ZHANG HH, MA XJ, WU LN, et al. Sirtuin-3 (SIRT3) protects pancreatic β-cells from endoplasmic reticulum (ER) stress-induced apoptosis and dysfunction[J]. Mol Cell Biochem, 2016, 420(1-2): 95-106. DOI: 10.1007/s11010-016-2771-5.
    [31]
    LETO D, SALTIEL AR. Regulation of glucose transport by insulin: traffic control of GLUT4[J]. Nat Rev Mol Cell Biol, 2012, 13(6): 383-396. DOI: 10.1038/nrm3351.
    [32]
    JEON JY, CHOI SE, HA ES, et al. GLP-1 improves palmitate-induced insulin resistance in human skeletal muscle via SIRT1 activity[J]. Int J Mol Med, 2019, 44(3): 1161-1171. DOI: 10.3892/ijmm.2019.4272.
    [33]
    MUSSO G, GAMBINO R, CASSADER M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis[J]. Prog Lipid Res, 2013, 52(1): 175-191. DOI: 10.1016/j.plipres.2012.11.002.
    [34]
    BRESQUE M, CAL K, PÉREZ-TORRADO V, et al. SIRT6 stabilization and cytoplasmic localization in macrophages regulates acute and chronic inflammation in mice[J]. J Biol Chem, 2022, 298(3): 101711. DOI: 10.1016/j.jbc.2022.101711.
    [35]
    KA SO, BANG IH, BAE EJ, et al. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor[J]. FASEB J, 2017, 31(9): 3999-4010. DOI: 10.1096/fj.201700098RR.
    [36]
    YANG XD, CHEN Z, YE L, et al. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF-κB p65 pathway[J]. Pharm Biol, 2021, 59(1): 922-932. DOI: 10.1080/13880209.2021.1945112.
    [37]
    XIAO C, WANG RH, LAHUSEN TJ, et al. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice[J]. J Biol Chem, 2012, 287(50): 41903-41913. DOI: 10.1074/jbc.M112.415182.
    [38]
    VACHHARAJANI VT, LIU T, WANG X, et al. Sirtuins link inflammation and metabolism[J]. J Immunol Res, 2016, 2016: 8167273. DOI: 10.1155/2016/8167273.
    [39]
    TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
    [40]
    LI M, HONG W, HAO C, et al. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice[J]. FASEB J, 2018, 32(1): 500-511. DOI: 10.1096/fj.201700612R.
    [41]
    PAROLA M, PINZANI M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65: 37-55. DOI: 10.1016/j.mam.2018.09.002.
    [42]
    KUNDU A, DEY P, PARK JH, et al. EX-527 prevents the progression of high-fat diet-induced hepatic steatosis and fibrosis by upregulating SIRT4 in Zucker rats[J]. Cells, 2020, 9(5): 1101. DOI: 10.3390/cells9051101.
    [43]
    ARTEAGA M, SHANG N, DING X, et al. Inhibition of SIRT2 suppresses hepatic fibrosis[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(11): G1155-G1168. DOI: 10.1152/ajpgi.00271.2015.
    [44]
    ZHONG X, HUANG M, KIM HG, et al. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2): 341-364. DOI: 10.1016/j.jcmgh.2020.04.005.
    [45]
    RYU D, JO YS, LO SASSO G, et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function[J]. Cell Metab, 2014, 20(5): 856-869. DOI: 10.1016/j.cmet.2014.08.001.
    [46]
    MARTÉNEZ-JIMÉNEZ V, CORTEZ-ESPINOSA N, RODRÍGUEZ-VARELA E, et al. Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individual with obesity[J]. Diabetes Metab Syndr, 2019, 13(1): 582-589. DOI: 10.1016/j.dsx.2018.11.011.
    [47]
    KIM HS, XIAO C, WANG RH, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis[J]. Cell Metab, 2010, 12(3): 224-236. DOI: 10.1016/j.cmet.2010.06.009.
    [48]
    SHARMA G, PARIHAR A, PARIHAR P, et al. Downregulation of sirtuin 3 by palmitic acid increases the oxidative stress, impairment of mitochondrial function, and apoptosis in liver cells[J]. J Biochem Mol Toxicol, 2019, 33(8): e22337. DOI: 10.1002/jbt.22337.
    [49]
    LI M, HONG W, HAO C, et al. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(12): 3202-3211. DOI: 10.1016/j.bbadis.2017.09.008.
    [50]
    ZHANG J, LI Y, LIU Q, et al. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on smad2 in hepatic stellate cells[J]. Hepatology, 2021, 73(3): 1140-1157. DOI: 10.1002/hep.31418.
    [51]
    CLAVERIA-CABELLO A, COLYN L, ARECHEDERRA M, et al. Epigenetics in liver fibrosis: Could HDACs be a therapeutic target?[J]. Cells, 2020, 9(10): 2321. DOI: 10.3390/cells9102321.
    [52]
    NASSIR F, IBDAH JA. Sirtuins and nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2016, 22(46): 10084-10092. DOI: 10.3748/wjg.v22.i46.10084.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (338) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return