中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 9
Sep.  2022
Turn off MathJax
Article Contents

Role of Takeda G protein-coupled receptor-5 in non-viral liver diseases

DOI: 10.3969/j.issn.1001-5256.2022.09.043
Research funding:

Key Program of National Natural Science Foundation of China (82130120);

National Natural Science Foundation of China (81973613);

Shanghai Rising-Star Program (19QA1408900)

More Information
  • Corresponding author: LIU Ping, liuliver@vip.sina.com(ORCID: 0000-0002-6152-4508); CHEN Jiamei, cjm0102@126.com(ORCID: 0000-0001-9808-9610)
  • Received Date: 2022-01-31
  • Accepted Date: 2022-03-05
  • Published Date: 2022-09-20
  • Non-viral liver diseases mainly include nonalcoholic fatty liver disease, alcoholic liver disease, autoimmune liver disease, and cholestatic liver disease, and the prevalence rate of non-viral liver diseases tends to increase in recent years. Takeda G protein-coupled receptor-5 (TGR5) belongs to the G protein-coupled receptor superfamily and is activated by primary and secondary bile acids. TGR5 plays an important regulatory role in bile acid homeostasis, basal metabolism, energy balance, and alleviation of inflammatory response and is a potential therapeutic target for many diseases. An increasing number of evidence has shown that TGR5 exerts a protective effect on the liver by improving bile acid and glycolipid metabolism in liver, alleviating liver inflammation, and reducing liver steatosis. This article reviews the recent advances in the basic research on TGR5 in the field of non-viral liver diseases, so as to facilitate the development of the research on TGR5.

     

  • loading
  • [1]
    MARUYAMA T, MIYAMOTO Y, NAKAMURA T, et al. Identification of membrane-type receptor for bile acids (M-BAR)[J]. Biochem Biophys Res Commun, 2002, 298(5): 714-719. DOI: 10.1016/s0006-291x(02)02550-0.
    [2]
    DUBOC H, TACHÉ Y, HOFMANN AF. The bile acid TGR5 membrane receptor: from basic research to clinical application[J]. Dig Liver Dis, 2014, 46(4): 302-312. DOI: 10.1016/j.dld.2013.10.021.
    [3]
    SCHAAP FG, TRAUNER M, JANSEN PL. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(1): 55-67. DOI: 10.1038/nrgastro.2013.151.
    [4]
    CHIANG JYL, FERRELL JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-G573. DOI: 10.1152/ajpgi.00223.2019.
    [5]
    DONEPUDI AC, BOEHME S, LI F, et al. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice[J]. Hepatology, 2017, 65(3): 813-827. DOI: 10.1002/hep.28707.
    [6]
    PATHAK P, LIU H, BOEHME S, et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism[J]. J Biol Chem, 2017, 292(26): 11055-11069. DOI: 10.1074/jbc.M117.784322.
    [7]
    KUMAR DP, ASGHARPOUR A, MIRSHAHI F, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet α cells to promote glucose homeostasis[J]. J Biol Chem, 2016, 291(13): 6626-6640. DOI: 10.1074/jbc.M115.699504.
    [8]
    SASAKI T, WATANABE Y, KUBOYAMA A, et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice[J]. J Biol Chem, 2021, 296: 100131. DOI: 10.1074/jbc.RA120.016203.
    [9]
    POLS TW, NOMURA M, HARACH T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading[J]. Cell Metab, 2011, 14(6): 747-757. DOI: 10.1016/j.cmet.2011.11.006.
    [10]
    LI S, QIU M, KONG Y, et al. Bile acid G protein-coupled membrane receptor TGR5 modulates aquaporin 2-mediated water homeostasis[J]. J Am Soc Nephrol, 2018, 29(11): 2658-2670. DOI: 10.1681/ASN.2018030271.
    [11]
    VELAZQUEZ-VILLEGAS LA, PERINO A, LEMOS V, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun, 2018, 9(1): 245. DOI: 10.1038/s41467-017-02068-0.
    [12]
    LIANG H, MATEI N, MCBRIDE DW, et al. TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats[J]. J Neuroinflammation, 2021, 18(1): 40. DOI: 10.1186/s12974-021-02087-1.
    [13]
    HU X, YAN J, HUANG L, et al. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats[J]. Brain Behav Immun, 2021, 91: 587-600. DOI: 10.1016/j.bbi.2020.09.016.
    [14]
    JIN P, DENG S, TIAN M, et al. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/ PKA/ CREB signaling axis in a rat model of sepsis[J]. Exp Neurol, 2021, 335: 113504. DOI: 10.1016/j.expneurol.2020.113504.
    [15]
    DENG L, CHEN X, ZHONG Y, et al. Activation of TGR5 partially alleviates high glucose-induced cardiomyocyte injury by inhibition of inflammatory responses and oxidative stress[J]. Oxid Med Cell Longev, 2019, 2019: 6372786. DOI: 10.1155/2019/6372786.
    [16]
    WANG J, ZHANG J, LIN X, et al. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction[J]. J Mol Cell Cardiol, 2021, 151: 3-14. DOI: 10.1016/j.yjmcc.2020.10.014.
    [17]
    LI J, CHENG R, WAN H. Overexpression of TGR5 alleviates myocardial ischemia/reperfusion injury via AKT/GSK-3β mediated inflammation and mitochondrial pathway[J]. Biosci Rep, 2020, 40(1): BSR20193482. DOI: 10.1042/BSR20193482.
    [18]
    ZHUANG L, DING W, ZHANG Q, et al. TGR5 attenuated liver ischemia-reperfusion injury by activating the Keap1-Nrf2 signaling pathway in mice[J]. Inflammation, 2021, 44(3): 859-872. DOI: 10.1007/s10753-020-01382-y.
    [19]
    ZHOU H, ZHOU S, SHI Y, et al. TGR5/Cathepsin E signaling regulates macrophage innate immune activation in liver ischemia and reperfusion injury[J]. Am J Transplant, 2021, 21(4): 1453-1464. DOI: 10.1111/ajt.16327.
    [20]
    LI ZY, ZHOU JJ, LUO CL, et al. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen Ⅱ-induced arthritis[J]. Mol Med Rep, 2019, 20(5): 4540-4550. DOI: 10.3892/mmr.2019.10711.
    [21]
    HU J, WANG C, HUANG X, et al. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling[J]. Cell Rep, 2021, 36(12): 109726. DOI: 10.1016/j.celrep.2021.109726.
    [22]
    MERLEN G, BIDAULT-JOURDAINNE V, KAHALE N, et al. Hepatoprotective impact of the bile acid receptor TGR5[J]. Liver Int, 2020, 40(5): 1005-1015. DOI: 10.1111/liv.14427.
    [23]
    MERLEN G, KAHALE N, URSIC-BEDOYA J, et al. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function[J]. Gut, 2020, 69(1): 146-157. DOI: 10.1136/gutjnl-2018-316975.
    [24]
    ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312.
    [25]
    SHI Y, SU W, ZHANG L, et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation[J]. Front Immunol, 2020, 11: 609060. DOI: 10.3389/fimmu.2020.609060.
    [26]
    DING L, SOUSA KM, JIN L, et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice[J]. Hepatology, 2016, 64(3): 760-773. DOI: 10.1002/hep.28689.
    [27]
    FINN PD, RODRIGUEZ D, KOHLER J, et al. Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(3): G412-G424. DOI: 10.1152/ajpgi.00300.2018.
    [28]
    ARAB JP, KARPEN SJ, DAWSON PA, et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology, 2017, 65(1): 350-362. DOI: 10.1002/hep.28709.
    [29]
    SINGAL AK, BATALLER R, AHN J, et al. ACG clinical guideline: Alcoholic liver disease[J]. Am J Gastroenterol, 2018, 113(2): 175-194. DOI: 10.1038/ajg.2017.469.
    [30]
    SPATZ M, CIOCAN D, MERLEN G, et al. Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis[J]. JHEP Rep, 2021, 3(2): 100230. DOI: 10.1016/j.jhepr.2021.100230.
    [31]
    FAN M, WANG Y, JIN L, et al. Bile acid-mediated activation of brown fat protects from alcohol-induced steatosis and liver injury in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 809-826. DOI: 10.1016/j.jcmgh.2021.12.001.
    [32]
    IRACHETA-VELLVE A, CALENDA CD, PETRASEK J, et al. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice[J]. Hepatol Commun, 2018, 2(11): 1379-1391. DOI: 10.1002/hep4.1256.
    [33]
    DYSON JK, BEUERS U, JONES D, et al. Primary sclerosing cholangitis[J]. Lancet, 2018, 391(10139): 2547-2559. DOI: 10.1016/S0140-6736(18)30300-3.
    [34]
    VESTERHUS M, KARLSEN TH. Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities[J]. J Gastroenterol, 2020, 55(6): 588-614. DOI: 10.1007/s00535-020-01681-z.
    [35]
    KEITEL V, REICH M, HÄUSSINGER D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis?[J]. Clin Rev Allergy Immunol, 2015, 48(2-3): 218-225. DOI: 10.1007/s12016-014-8443-x.
    [36]
    REICH M, SPOMER L, KLINDT C, et al. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis[J]. J Hepatol, 2021, 75(3): 634-646. DOI: 10.1016/j.jhep.2021.03.029.
    [37]
    BAGHDASARYAN A, CLAUDEL T, GUMHOLD J, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO3- output[J]. Hepatology, 2011, 54(4): 1303-1312. DOI: 10.1002/hep.24537.
    [38]
    YOKODA RT, RODRIGUEZ EA. Review: Pathogenesis of cholestatic liver diseases[J]. World J Hepatol, 2020, 12(8): 423-435. DOI: 10.4254/wjh.v12.i8.423.
    [39]
    KEITEL V, HÄUSSINGER D. Role of TGR5 (GPBAR1) in liver disease[J]. Semin Liver Dis, 2018, 38(4): 333-339. DOI: 10.1055/s-0038-1669940.
    [40]
    BIDAULT-JOURDAINNE V, MERLEN G, GLÉNISSON M, et al. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload[J]. JHEP Rep, 2020, 3(2): 100214. DOI: 10.1016/j.jhepr.2020.100214.
    [41]
    KLINDT C, REICH M, HELLWIG B, et al. The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signaling in liver[J]. Cells, 2019, 8(11): 1467. DOI: 10.3390/cells8111467.
    [42]
    YANG H, LUO F, WEI Y, et al. TGR5 protects against cholestatic liver disease via suppressing the NF-κB pathway and activating the Nrf2/HO-1 pathway[J]. Ann Transl Med, 2021, 9(14): 1158. DOI: 10.21037/atm-21-2631.
    [43]
    RAO J, YANG C, YANG S, et al. Deficiency of TGR5 exacerbates immune-mediated cholestatic hepatic injury by stabilizing the β-catenin destruction complex[J]. Int Immunol, 2020, 32(5): 321-334. DOI: 10.1093/intimm/dxaa002.
    [44]
    GUTIÉRREZ-REBOLLEDO GA, SIORDIA-REYES AG, MECKES-FISCHER M, et al. Hepatoprotective properties of oleanolic and ursolic acids in antitubercular drug-induced liver damage[J]. Asian Pac J Trop Med, 2016, 9(7): 644-651. DOI: 10.1016/j.apjtm.2016.05.015.
    [45]
    MACZEWSKY J, KAISER J, GRESCH A, et al. TGR5 activation promotes stimulus-secretion coupling of pancreatic β-cells via a PKA-dependent pathway[J]. Diabetes, 2019, 68(2): 324-336. DOI: 10.2337/db18-0315.
    [46]
    RAJAGOPAL S, KUMAR DP, MAHAVADI S, et al. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac-and PKA-mediated inhibition of RhoA/Rho kinase pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 304(5): G527-G535. DOI: 10.1152/ajpgi.00388.2012.
    [47]
    XUE C, LI Y, LV H, et al. Oleanolic acid targets the gut-liver axis to alleviate metabolic disorders and hepatic steatosis[J]. J Agric Food Chem, 2021, 69(28): 7884-7897. DOI: 10.1021/acs.jafc.1c02257.
    [48]
    LIU J, WANG X, LIU R, et al. Oleanolic acid co-administration alleviates ethanol-induced hepatic injury via Nrf-2 and ethanol-metabolizing modulating in rats[J]. Chem Biol Interact, 2014, 221: 88-98. DOI: 10.1016/j.cbi.2014.07.017.
    [49]
    LIU J, LU YF, WU Q, et al. Oleanolic acid reprograms the liver to protect against hepatotoxicants, but is hepatotoxic at high doses[J]. Liver Int, 2019, 39(3): 427-439. DOI: 10.1111/liv.13940.
    [50]
    MLALA S, OYEDEJI AO, GONDWE M, et al. Ursolic acid and its derivatives as bioactive agents[J]. Molecules, 2019, 24(15): 2751. DOI: 10.3390/molecules24152751.
    [51]
    SUNDARESAN A, RADHIGA T, PUGALENDI KV. Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice[J]. Eur J Pharmacol, 2014, 741: 297-303. DOI: 10.1016/j.ejphar.2014.07.032.
    [52]
    CHENG J, LIU Y, LIU Y, et al. Ursolic acid alleviates lipid accumulation by activating the AMPK signaling pathway in vivo and in vitro[J]. J Food Sci, 2020, 85(11): 3998-4008. DOI: 10.1111/1750-3841.15475.
    [53]
    YAN X, REN X, LIU X, et al. Dietary ursolic acid prevents alcohol-induced liver injury via gut-liver axis homeostasis modulation: The key role of microbiome manipulation[J]. J Agric Food Chem, 2021, 69(25): 7074-7083. DOI: 10.1021/acs.jafc.1c02362.
    [54]
    HORIBA T, KATSUKAWA M, MITA M, et al. Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway[J]. Biochem Biophys Res Commun, 2015, 463(4): 846-852. DOI: 10.1016/j.bbrc.2015.06.022.
    [55]
    DING L, YANG Q, ZHANG E, et al. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice[J]. Acta Pharm Sin B, 2021, 11(6): 1541-1554. DOI: 10.1016/j.apsb.2021.03.038.
    [56]
    JIANG LS, LI W, ZHUANG TX, et al. Ginsenoside ro ameliorates high-fat diet-induced obesity and insulin resistance in mice via activation of the G protein-coupled bile acid receptor 5 pathway[J]. J Pharmacol Exp Ther, 2021, 377(3): 441-451. DOI: 10.1124/jpet.120.000435.
    [57]
    HE K, HU Y, MA H, et al. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways[J]. Biochim Biophys Acta, 2016, 1862(9): 1696-1709. DOI: 10.1016/j.bbadis.2016.06.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (437) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return