中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工合成多肽cSN50.1对肝癌细胞HepG2恶性行为的影响及其机制

辛华 单洪超 栾海艳 阮洋 杨鑫妍

引用本文:
Citation:

人工合成多肽cSN50.1对肝癌细胞HepG2恶性行为的影响及其机制

DOI: 10.3969/j.issn.1001-5256.2023.10.014
基金项目: 

‍黑龙江省卫生厅项目 (20210404010187);

佳木斯大学青年创新人才培养支持计划项目 (JMSUQP2021016);

黑龙江省省属高等学校基本科研业务费团队项目 (2022-KYYWF-0656)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:辛华、栾海艳负责课题设计,资料分析,撰写论文;单洪超参与收集数据,修改论文;阮洋、杨鑫妍负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    阮洋, 88584060@qq.com (ORCID: 0000-0002-9802-120X)

    杨鑫妍, yangxinyan5464@163.com (ORCID: 0000-0003-0819-6768)

Effect of synthetic peptide cSN50.1 on the malignant behavior of hepatocellular carcinoma HepG2 cells and its mechanism

Research funding: 

Project of Health Department of Heilongjiang Province (20210404010187);

Jiamusi University Youth Innovative Talent Training Support Program (JMSUQP2021016);

Basic Scientific Research Operating Expenses Team Project of Heilongjiang Provincial Colleges and Universities (2022-KYYWF-0656)

More Information
  • 摘要:   目的  探讨cSN50.1对HepG2细胞增殖、迁移、侵袭和集落形成能力的影响及机制。  方法  将HepG2细胞分为6组:cSN50.1 0 μmol/L、10 μmol/L、30 μmol/L、50 μmol/L、70 μmol/L、90 μmol/L组,采用CCK-8实验研究不同浓度cSN50.1对HepG2细胞增殖的影响,并计算半数抑制浓度(IC50);将HepG2细胞分为4组:cSN50.1 0 μmol/L、10 μmol/L、30 μmol/L、50 μmol/L,采用细胞划痕、Transwell和细胞克隆实验研究不同浓度cSN50.1对HepG2细胞迁移、侵袭和集落形成能力的影响;将HepG2细胞分为3组:Control组、SP600125组(AP-1信号通路抑制剂)和cSN50.1组,研究AP-1信号通路在cSN50.1对肝癌细胞作用中的影响,采用RT-PCR和Western Blot检测CXCL5和TNF-α的表达以及细胞质和细胞核中c-Jun蛋白的表达;将HepG2细胞分为3组:Control组、PDTC组(NF-κB信号通路抑制剂)和cSN50.1组,研究NF-κB信号通路在cSN50.1对肝癌细胞作用中的影响,采用RT-PCR和Western Blot检测CXCL5和TNF-α的表达以及细胞质和细胞核中NF-κB蛋白的表达。多组间比较采用单因素方差分析,进一步两两比较采用SNK-q检验。  结果  与0 μmol/L相比,10 μmol/L组的增殖、迁移、侵袭和集落形成能力无明显变化(P值均>0.05);30 μmol/L组的增殖能力无明显变化(P>0.05),迁移、侵袭和集落形成能力均明显降低(P值均<0.05);50 μmol/L组的增殖、迁移、侵袭和集落形成能力均明显降低(P值均<0.01);70 μmol/L和90 μmol/L组的细胞增殖能力均明显降低(P值均<0.01),但细胞存活率低于50%。与Control组相比,SP600125组、PDTC组和cSN50.1组中CXCL5和TNF-α的基因和蛋白表达均明显降低(P值均<0.05)。与Control组相比,SP600125组、PDTC组和cSN50.1组中细胞核蛋白c-Jun和NF-κB表达均明显降低(P值均<0.05),SP600125组和PDTC组中细胞质蛋白c-Jun和NF-κB表达均明显降低(P值均<0.05),cSN50.1组中细胞质蛋白c-Jun和NF-κB表达明显增高(P<0.05)。  结论  cSN50.1可以抑制肝癌细胞的恶性行为,可抑制肝癌细胞中c-Jun和NF-κB的入核转运来降低CXCL5和TNF-α的表达。

     

  • 图  1  cSN50.1对肝癌细胞HepG2增殖的影响

    Figure  1.  Effect of cSN50.1 on hepatoma cell HepG2 proliferation

    图  2  cSN50.1对肝癌细胞HepG2迁移能力的影响

    注: a,结果比较;b,划痕实验(×50)。

    Figure  2.  Effects of cSN50.1 on the migration ability of hepatocellular carcinoma cells HepG2

    图  3  cSN50.1对肝癌细胞HepG2侵袭能力的影响

    注: a,结果比较;b, Transwell实验(×100)。

    Figure  3.  Effect of cSN50.1 on invasion ability of hepatoma cells HepG2

    图  4  cSN50.1对肝癌细胞HepG2集落形成能力的影响

    注: a,结果比较;b,细胞克隆实验。

    Figure  4.  Effect of cSN50.1 on colony formation ability of hepatocellular carcinoma cells HepG2

    图  5  cSN50.1对各组细胞中CXCL5和TNF-α表达的影响

    注: a、b,细胞中CXCL5和TNF-α mRNA表达;c、d,细胞中CXCL5和TNF-α蛋白表达。

    Figure  5.  Effects of cSN50.1 on the expression of CXCL5 and TNF-α in each group

    图  6  cSN50.1对各组细胞质和细胞核中c-Jun蛋白表达的影响

    注: a、b,细胞质中c-Jun蛋白表达;c、d,细胞核中c-Jun蛋白表达。

    Figure  6.  Effects of cSN50.1 on the expression of c-Jun protein in cytoplasm and nucleus of each group of cells

    图  7  cSN50.1对各组细胞中CXCL5和TNF-α表达的影响

    注: a、b,细胞中CXCL5和TNF-α mRNA表达;c、d,细胞中CXCL5和TNF-α蛋白表达。

    Figure  7.  Effects of cSN50.1 on the expression of CXCL5 and TNF-α in each group

    图  8  cSN50.1对各组细胞质和细胞核中NF-κB蛋白表达的影响

    注: a、b,细胞质中NF-κB蛋白表达;c、d,细胞核中NF-κB蛋白表达。

    Figure  8.  Effect of cSN50.1 on the expression of NF-κB protein in cytoplasm and nucleus of cells of each group

  • [1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68( 6): 394- 424. DOI: 10.3322/caac.21492.
    [2] 2019 Under- GBD 5 Mortality Collaborators. Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: All-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019[J]. Lancet, 2021, 398( 10303): 870- 905. DOI: 10.1016/S0140-6736(21)01207-1.
    [3] VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380( 15): 1450- 1462. DOI: 10.1056/nejmra1713263.
    [4] LI X, RAMADORI P, PFISTER D, et al. The immunological and metabolic landscape in primary and metastatic liver cancer[J]. Nat Rev Cancer, 2021, 21( 9): 541- 557. DOI: 10.1038/s41568-021-00383-9.
    [5] LEE G, HAN SB, LEE JH, et al. Cancer mechanobiology: Microenvironmental sensing and metastasis[J]. ACS Biomater Sci Eng, 2019, 5( 8): 3735- 3752. DOI: 10.1021/acsbiomaterials.8b01230.
    [6] VEACH RA, LIU Y, ZIENKIEWICZ J, et al. Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles[J]. PLoS One, 2017, 12( 6): e0179468. DOI: 10.1371/journal.pone.0179468.
    [7] ALTEKRUSE SF, MCGLYNN KA, REICHMAN ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005[J]. J Clin Oncol, 2009, 27( 9): 1485- 1491. DOI: 10.1200/JCO.2008.20.7753.
    [8] SCHLEIN LJ, THAMM DH. Review: NF-kB activation in canine cancer[J]. Vet Pathol, 2022, 59( 5): 724- 732. DOI: 10.1177/03009858221092017.
    [9] YANG Y, LI TF, HUANG C. Research progress of tumor stroma ingredient and pathological features in gastric cancer[J]. Chin J Dig Surg, 2022, 21( 3): 427- 432. DOI: 10.3760/cma.j.cn115610-20220216-00090.

    杨彦, 李腾飞, 黄陈. 肿瘤间质成分及病理学特征在胃肿瘤中的研究进展[J]. 中华消化外科杂志, 2022, 21( 3): 427- 432. DOI: 10.3760/cma.j.cn115610-20220216-00090.
    [10] KWON OS, CHOI SH, KIM JH. Inflammation and hepatic fibrosis, then hepatocellular carcinoma[J]. Korean J Gastroenterol, 2015, 66( 6): 320- 324. DOI: 10.4166/kjg.2015.66.6.320.
    [11] CHEN H, ZHOU XH, LI JR, et al. Neutrophils: Driving inflammation during the development of hepatocellular carcinoma[J]. Cancer Lett, 2021, 522: 22- 31. DOI: 10.1016/j.canlet.2021.09.011.
    [12] PETRICK JL, FLORIO AA, ZNAOR A, et al. International trends in hepatocellular carcinoma incidence, 1978–2012[J]. Int J Cancer, 2020, 147( 2): 317- 330. DOI: 10.1002/ijc.32723.
    [13] TANG A, HALLOUCH O, CHERNYAK V, et al. Epidemiology of hepatocellular carcinoma: Target population for surveillance and diagnosis[J]. Abdom Radiol, 2018, 43( 1): 13- 25. DOI: 10.1007/s00261-017-1209-1.
    [14] SINGAL AG, LAMPERTICO P, NAHON P. Epidemiology and surveillance for hepatocellular carcinoma: New trends[J]. J Hepatol, 2020, 72( 2): 250- 261. DOI: 10.1016/j.jhep.2019.08.025.
    [15] YE DY, YANG S, ZHAO LL, et al. Research progress in effects of inflammatory markers on occurrence, development and prognosis of malignant tumors and their mechanisms[J]. J Jilin Univ(Med Ed), 2022, 48( 4): 1079- 1087. DOI: 10.13481/j.1671-587X.20220432.

    叶德宇, 杨帅, 赵龙龙, 等. 炎性标志物对恶性肿瘤发生发展和预后的影响及其机制的研究进展[J]. 吉林大学学报(医学版), 2022, 48( 4): 1079- 1087. DOI: 10.13481/j.1671-587X.20220432.
    [16] RICHARDSON JSM, AMINUDIN N, MALEK SN ABD. Chalepin: A compound from Ruta angustifolia L. pers exhibits cell cycle arrest at S phase, suppresses nuclear factor-kappa B(NF-κB) pathway, signal transducer and activation of transcription 3(STAT3) phosphorylation and extrinsic apoptotic pathway in non-small cell lung cancer carcinoma(A549)[J]. Pharmacogn Mag, 2017, 13( Suppl 3): S489-S498. DOI: 10.4103/pm.pm_13_17.
    [17] VERMA A, SINGH D, ANWAR F, et al. Triterpenoids principle of Wedelia calendulacea attenuated diethynitrosamine-induced hepatocellular carcinoma via down-regulating oxidative stress, inflammation and pathology via NF-kB pathway[J]. Inflammopharmacology, 2018, 26( 1): 133- 146. DOI: 10.1007/s10787-017-0350-3.
    [18] REN ZR, CHEN Y, SHI L, et al. Sox9/CXCL5 axis facilitates tumour cell growth and invasion in hepatocellular carcinoma[J]. FEBS J, 2022, 289( 12): 3535- 3549. DOI: 10.1111/febs.16357.
    [19] JIA XQ, WEI SQ, XIONG WJ. CXCL5/NF-κB pathway as a therapeutic target in hepatocellular carcinoma treatment[J]. J Oncol, 2021, 2021: 9919494. DOI: 10.1155/2021/9919494.
    [20] ZHOU SL, DAI Z, ZHOU ZJ, et al. CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils[J]. Carcinogenesis, 2014, 35( 3): 597- 605. DOI: 10.1093/carcin/bgt397.
    [21] XIA JL, XU XJ, HUANG PX, et al. The potential of CXCL5 as a target for liver cancer-what do we know so far?[J]. Expert Opin Ther Targets, 2015, 19( 2): 141- 146. DOI: 10.1517/14728222.2014.993317.
    [22] PAN LC, XIAO HY, YIN WJ, et al. Correlation between HSD17B4 expression in rat liver cancer tissues and inflammation or proliferation[J]. Eur Rev Med Pharmacol Sci, 2018, 22( 11): 3386- 3393. DOI: 10.26355/eurrev_201806_15160.
    [23] YANG YM, KIM SY, SEKI E. Inflammation and liver cancer: Molecular mechanisms and therapeutic targets[J]. Semin Liver Dis, 2019, 39( 1): 26- 42. DOI: 10.1055/s-0038-1676806.
    [24] XING Y, LIU Y, QI Z, et al. LAGE3 promoted cell proliferation, migration, and invasion and inhibited cell apoptosis of hepatocellular carcinoma by facilitating the JNK and ERK signaling pathway[J]. Cell Mol Biol Lett, 2021, 26( 1): 49. DOI: 10.1186/s11658-021-00295-4.
    [25] BHOSALE PB, KIM HH, ABUSALIYA A, et al. Structural and functional properties of activator protein-1 in cancer and inflammation[J]. Evid Based Complementary Altern Med, 2022, 2022: 1- 8. DOI: 10.1155/2022/9797929.
    [26] TAN WL, LUO X, LI WD, et al. TNF-α is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma[J]. EBioMedicine, 2019, 40: 446- 456. DOI: 10.1016/j.ebiom.2018.12.047.
    [27] DOLCET X, LLOBET D, PALLARES J, et al. NF-kB in development and progression of human cancer[J]. Virchows Arch, 2005, 446( 5): 475- 482. DOI: 10.1007/s00428-005-1264-9.
  • 加载中
图(8)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  53
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 出版日期:  2023-10-30
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回