中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抑制性受体TIGIT与慢性HBV感染中免疫紊乱的关系

周玉霞 王彩红 姚晓文 王蓉 郑晓凤 于晓辉 张久聪

引用本文:
Citation:

抑制性受体TIGIT与慢性HBV感染中免疫紊乱的关系

DOI: 10.3969/j.issn.1001-5256.2023.06.026
基金项目: 

国家自然科学基金 (81500454);

第九四〇医院拔尖项目 (2021yxky002)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:周玉霞负责课题设计,撰写论文;王彩红、姚晓文、王蓉、郑晓凤参与修改论文;张久聪、于晓辉负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    YU Xiaohui, yuxiaohui528@126.com(ORCID: 0000-0002-8633-3281)

    ZHANG Jiucong, zhangjiucong@163.com(ORCID: 0000-0003-4006-3033)

Association of inhibitory receptor T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain with immune disorders in chronic HBV infection

Research funding: 

National Natural Science Foundation of China (81500454);

The 940th Hospital Tiptop Project (2021yxky002)

  • 摘要: 持续HBV感染改变了天然免疫细胞和获得性免疫细胞表面受体的表达,由此引发的多种免疫紊乱,可导致免疫逃逸,最终使疾病慢性化。研究表明,抑制性受体的上调是患者免疫紊乱的主要原因,阻断抑制性受体可一定程度上恢复患者的免疫功能。T淋巴细胞免疫球蛋白和免疫受体酪氨酸抑制性基序结构域(TIGIT)是目前较为关注的一种新型抑制性受体,在NK细胞和T淋巴细胞中高水平表达。研究发现,TIGIT在慢性病毒感染中发挥重要作用,现就TIGIT与慢性HBV感染中免疫紊乱的相关性研究进展进行简要综述。

     

  • 图  1  TIGIT在免疫细胞上的表达及在慢性HBV感染进程中对免疫细胞的影响

    注:MDSC,骨髓来源的抑制性细胞;HSC,肝星状细胞;PDGF,血小板衍生生长因子。

    Figure  1.  The expression of TIGIT on immune cells and its effect on immune cells during chronic HBV infection

  • [1] MENG Z, CHEN Y, LU M. Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection[J]. Front Immunol, 2019, 10: 3127. DOI: 10.3389/fimmu.2019.03127.
    [2] COX MA, NECHANITZKY R, MAK TW. Check point inhibitors as therapies for infectious diseases[J]. Curr Opin Immunol, 2017, 48: 61-67. DOI: 10.1016/j.coi.2017.07.016.
    [3] WANG L, WANG K, ZOU ZQ. Crosstalk between innate and adaptive immunity in hepatitis B virus infection[J]. World J Hepatol, 2015, 7(30): 2980-2991. DOI: 10.4254/wjh.v7.i30.2980.
    [4] HOPCRAFT SE, DAMANIA B. Tumour viruses and innate immunity[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1732): 20160267. DOI: 10.1098/rstb.2016.0267.
    [5] ZHAO HJ, HU YF, HAN QJ, et al. Innate and adaptive immune escape mechanisms of hepatitis B virus[J]. World J Gastroenterol, 2022, 28(9): 881-896. DOI: 10.3748/wjg.v28.i9.881.
    [6] WU J, HAN M, LI J, et al. Immunopathogenesis of HBV infection[J]. Adv Exp Med Biol, 2020, 1179: 71-107. DOI: 10.1007/978-981-13-9151-4_4.
    [7] JIN X, YAN ZH, LU L, et al. Peripheral Immune cells exhaustion and functional impairment in patients with chronic hepatitis B[J]. Front Med (Lausanne), 2021, 8: 759292. DOI: 10.3389/fmed.2021.759292.
    [8] BAUDI I, KAWASHIMA K, ISOGAWA M. HBV-specific CD8+ T-cell tolerance in the liver[J]. Front Immunol, 2021, 12: 721975. DOI: 10.3389/fimmu.2021.721975.
    [9] FISICARO P, BARILI V, ROSSI M, et al. Pathogenetic mechanisms of T cell dysfunction in chronic HBV infection and related therapeutic approaches[J]. Front Immunol, 2020, 11: 849. DOI: 10.3389/fimmu.2020.00849.
    [10] ROTTE A, SAHASRANAMAN S, BUDHA N. Targeting TIGIT for immunotherapy of cancer: update on clinical development[J]. Biomedicines, 2021, 9(9): 1277. DOI: 10.3390/biomedicines9091277.
    [11] STANIETSKY N, ROVIS TL, GLASNER A, et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR[J]. Eur J Immunol, 2013, 43(8): 2138-2150. DOI: 10.1002/eji.201243072.
    [12] JIN HS, PARK Y. Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy[J]. BMB Rep, 2021, 54(1): 2-11. DOI: 10.5483/BMBRep.2021.54.1.229.
    [13] HUANG Z, QI G, MILLER JS, et al. CD226: An emerging role in immunologic diseases[J]. Front Cell Dev Biol, 2020, 8: 564. DOI: 10.3389/fcell.2020.00564.
    [14] HARJUNPÄÄ H, GUILLEREY C. TIGIT as an emerging immune checkpoint[J]. Clin Exp Immunol, 2020, 200(2): 108-119. DOI: 10.1111/cei.13407.
    [15] WANG J, HOU H, MAO L, et al. TIGIT signaling pathway regulates natural killer cell function in chronic hepatitis B virus infection[J]. Front Med (Lausanne), 2021, 8: 816474. DOI: 10.3389/fmed.2021.816474.
    [16] WEI YY, FAN J, SHAN MX, et al. TIGIT marks exhausted T cells and serves as a target for immune restoration in patients with chronic HBV infection[J]. Am J Transl Res, 2022, 14(2): 942-954.
    [17] LIU C, XU L, XIA C, et al. Increased proportion of functional subpopulations in circulating regulatory T cells in patients with chronic hepatitis B[J]. Hepatol Res, 2020, 50(4): 439-452. DOI: 10.1111/hepr.13472.
    [18] ZHANG W, SUN H, SUN R, et al. HBV immune tolerance of HBs-transgenic mice observed through parabiosis with WT mice[J]. Front Immunol, 2022, 13: 993246. DOI: 10.3389/fimmu.2022.993246.
    [19] LOZANO E, DOMINGUEZ-VILLAR M, KUCHROO V, et al. The TIGIT/CD226 axis regulates human T cell function[J]. J Immunol, 2012, 188(8): 3869-3875. DOI: 10.4049/jimmunol.1103627.
    [20] JIA L, GAO Y, HE Y, et al. HBV induced hepatocellular carcinoma and related potential immunotherapy[J]. Pharmacol Res, 2020, 159: 104992. DOI: 10.1016/j.phrs.2020.104992.
    [21] WU Y, HAO X, WEI H, et al. Blockade of T-cell receptor with Ig and ITIM domains elicits potent antitumor immunity in naturally occurring HBV-related HCC in mice[J]. Hepatology, 2023, 77(3): 965-981. DOI: 10.1002/hep.32715.
    [22] XU F, JIN T, ZHU Y, et al. Immune checkpoint therapy in liver cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 110. DOI: 10.1186/s13046-018-0777-4.
    [23] LIU X, LI M, WANG X, et al. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(12): 2041-2054. DOI: 10.1007/s00262-019-02426-5.
    [24] YU L, LIU X, WANG X, et al. TIGIT+ TIM-3+ NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus-related hepatocellular carcinoma[J]. Oncoimmunology, 2021, 10(1): 1942673. DOI: 10.1080/2162402X.2021.1942673.
    [25] BLAZKOVA J, HUITING ED, BODDAPATI AK, et al. Correlation between TIGIT expression on CD8+ T cells and higher cytotoxic capacity[J]. J Infect Dis, 2021, 224(9): 1599-1604. DOI: 10.1093/infdis/jiab155.
    [26] DUAN X, LIU J, CUI J, et al. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma[J]. Mol Med Rep, 2019, 20(4): 3773-3781. DOI: 10.3892/mmr.2019.10641.
    [27] AMANCHA PK, HONG JJ, ROGERS K, et al. In vivo blockade of the programmed cell death-1 pathway using soluble recombinant PD-1-Fc enhances CD4+ and CD8+ T cell responses but has limited clinical benefit[J]. J Immunol, 2013, 191(12): 6060-6070. DOI: 10.4049/jimmunol.1302044.
    [28] FERRANDO-MARTINEZ S, SNELL BENNETT A, LINO E, et al. Functional exhaustion of HBV-specific CD8 T cells impedes pD-L1 blockade efficacy in chronic HBV infection[J]. Front Immunol, 2021, 12: 648420. DOI: 10.3389/fimmu.2021.648420.
    [29] CHEW GM, FUJITA T, WEBB GM, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection[J]. PLoS Pathog, 2016, 12(1): e1005349. DOI: 10.1371/journal.ppat.1005349.
    [30] GE Z, ZHOU G, CAMPOS CARRASCOSA L, et al. TIGIT and PD1 co-blockade restores ex vivo functions of human tumor-infiltrating CD8+ T cells in hepatocellular carcinoma[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(2): 443-464. DOI: 10.1016/j.jcmgh.2021.03.003.
    [31] ZONG L, PENG H, SUN C, et al. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice[J]. Nat Commun, 2019, 10(1): 221. DOI: 10.1038/s41467-018-08096-8.
  • 加载中
图(1)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  50
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 录用日期:  2022-11-11
  • 出版日期:  2023-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回