中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饮食行为与非酒精性脂肪性肝病的关系

袁乙富 曹勤 蒋元烨

引用本文:
Citation:

饮食行为与非酒精性脂肪性肝病的关系

DOI: 10.3969/j.issn.1001-5256.2023.02.024
基金项目: 

上海市自然科学基金 (22ZR1455900);

上海市卫计委临床研究专项面上项目 (201940449);

上海市卫计委临床研究专项面上项目 (ptkwws202201);

上海中医药大学后备卓越中医人才项目 (20D-RC-02);

上海市名中医沈红权普陀传承工作室 (ptzygzs2201);

沈红权上海市名老中医学术经验研究工作室 (SHGZS-202224)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:袁乙富负责撰写论文;蒋元烨指导撰写,修改文章;曹勤、蒋元烨负责拟定写作思路并最后定稿。
详细信息
    通信作者:

    曹勤,caoqin434@sina.com (ORCID:0000-0003-1748-3451)

    蒋元烨,yuanye1014@126.com (ORCID:0000-0002-4979-4206)

Association of dietary behavior with nonalcoholic fatty liver disease

Research funding: 

Shanghai Natural Science Foundation of China (22ZR1455900);

Shanghai Municipal Commission of Health and Family Planning (201940449);

Shanghai Putuo District Health System Science and Technology Innovation Project (ptkwws202201);

Reserve Outstanding TCM Talents Program of Shanghai University of Chinese Medicine (20D-RC-02);

Shanghai Famous Traditional Chinese Medicine Shen Hongquan Putuo Inheritance Studio (ptzygzs2201);

Shen Hongquan, Shanghai Traditional Chinese Medicine Academic Experience Research Studio (SHGZS-202224)

More Information
  • 摘要: 非酒精性脂肪性肝病(NAFLD)的患病率逐年攀升,对全球公共卫生造成重大负担。NAFLD发病与肥胖、胰岛素抵抗、饮食等因素息息相关,其中饮食是NAFLD防治的核心与基石。鉴于既往研究侧重于不同饮食成分、结构、方案与NAFLD的关系,而较少探讨整体饮食行为对NAFLD的影响。故本文将饮食行为对NAFLD的影响进行综述,旨在为NAFLD的防治及指导患者合理饮食行为习惯提供参考依据。

     

  • [1] JARVIS H, CRAIG D, BARKER R, et al. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies[J]. PLoS Med, 2020, 17(4): e1003100. DOI: 10.1371/journal.pmed.1003100.
    [2] HUANG DQ, EL-SERAG HB, LOOMBA R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(4): 223-238. DOI: 10.1038/s41575-020-00381-6.
    [3] LI J, ZOU B, YEO YH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 389-398. DOI: 10.1016/S2468-1253(19)30039-1.
    [4] LONARDO A, NASCIMBENI F, MANTOVANI A, et al. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence?[J]. J Hepatol, 2018, 68(2): 335-352. DOI: 10.1016/j.jhep.2017.09.021.
    [5] SCHATTENBERG JM, BERGHEIM I. Nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD)[J]. Nutrients, 2019, 11(3): 588. DOI: 10.3390/nu11030588.
    [6] ZHENG KI, FAN JG, SHI JP, et al. From NAFLD to MAFLD: a "redefining" moment for fatty liver disease[J]. Chin Med J (Engl), 2020, 133(19): 2271-2273. DOI: 10.1097/CM9.0000000000000981.
    [7] ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039.
    [8] TILG H, ADOLPH TE, MOSCHEN AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade[J]. Hepatology, 2021, 73(2): 833-842. DOI: 10.1002/hep.31518.
    [9] CHAKRAVARTHY MV, WADDELL T, BANERJEE R, et al. Nutrition and nonalcoholic fatty liver disease: current perspectives[J]. Gastroenterol Clin North Am, 2020, 49(1): 63-94. DOI: 10.1016/j.gtc.2019.09.003.
    [10] QUESADA-VÁZQUEZ S, ARAGONÈS G, DEL BAS JM, et al. Diet, gut microbiota and non-alcoholic fatty liver disease: three parts of the same axis[J]. Cells, 2020, 9(1): 176. DOI: 10.3390/cells9010176.
    [11] WANG H, YU Y, TIAN X. Does eating-away-from-home increase the risk of a metabolic syndrome diagnosis?[J]. Int J Environ Res Public Health, 2019, 16(4): 575. DOI: 10.3390/ijerph16040575.
    [12] WELLARD-COLE L, DAVIES A, ALLMAN-FARINELLI M. Contribution of foods prepared away from home to intakes of energy and nutrients of public health concern in adults: a systematic review[J]. Crit Rev Food Sci Nutr, 2022, 62(20): 5511-5522. DOI: 10.1080/10408398.2021.1887075.
    [13] GESTEIRO E, GARCÍA-CARRO A, APARICIO-UGARRIZA R, et al. Eating out of home: influence on nutrition, health, and policies: a scoping review[J]. Nutrients, 2022, 14(6): 1265. DOI: 10.3390/nu14061265.
    [14] WEI X, YU D, JU L, et al. Analysis of the correlation between meal frequency and obesity among Chinese adults aged 18-59 years in 2015[J]. Nutrients, 2022, 14(3): 696. DOI: 10.3390/nu14030696.
    [15] PEREIRA MA, KARTASHOV AI, EBBELING CB, et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis[J]. Lancet, 2005, 365(9453): 36-42. DOI: 10.1016/S0140-6736(04)17663-0.
    [16] RIVERA AS, AKANBI M, O'DWYER LC, et al. Shift work and long work hours and their association with chronic health conditions: A systematic review of systematic reviews with meta-analyses[J]. PLoS One, 2020, 15(4): e0231037. DOI: 10.1371/journal.pone.0231037.
    [17] BO S, MUSSO G, BECCUTI G, et al. Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study[J]. PLoS One, 2014, 9(9): e108467. DOI: 10.1371/journal.pone.0108467.
    [18] NISHI T, BABAZONO A, MAEDA T, et al. Effects of eating fast and eating before bedtime on the development of nonalcoholic fatty liver disease[J]. Popul Health Manag, 2016, 19(4): 279-283. DOI: 10.1089/pop.2015.0088.
    [19] DAVIS R, MURGIA C, DORDEVIC AL, et al. Diurnal variation in gene expression of human peripheral blood mononuclear cells after eating a standard meal compared with a high protein meal: A cross-over study[J]. Clin Nutr, 2021, 40(6): 4349-4359. DOI: 10.1016/j.clnu.2021.01.011.
    [20] BORER KT, LIN PJ, WUORINEN E. Timing of meals and exercise affects hormonal control of glucoregulation, insulin resistance, substrate metabolism, and gastrointestinal hormones, but has little effect on appetite in postmenopausal women[J]. Nutrients, 2021, 13(12) : 4342. DOI: 10.3390/nu13124342.
    [21] FUSE Y, HIRAO A, KURODA H, et al. Differential roles of breakfast only (one meal per day) and a bigger breakfast with a small dinner (two meals per day) in mice fed a high-fat diet with regard to induced obesity and lipid metabolism[J]. J Circadian Rhythms, 2012, 10(1): 4. DOI: 10.1186/1740-3391-10-4.
    [22] HAN A L. Association between non-alcoholic fatty liver disease and dietary habits, stress, and health-related quality of life in Korean adults[J]. Nutrients, 2020, 12(6): 1555. DOI: 10.3390/nu12061555.
    [23] GARCIDUEÑAS-FIMBRES T, PAZ-GRANIEL I, NISHI S, et al. Eating speed, eating frequency, and their relationships with diet quality, adiposity, and metabolic syndrome, or its components[J]. Nutrients, 2021, 13(5): 1687. DOI: 10.3390/nu13051687.
    [24] YIN C, LI Z, XIANG Y, et al. Effect of intermittent fasting on non-alcoholic fatty liver disease: systematic review and meta-analysis[J]. Front Nutr, 2021, 8: 709683. DOI: 10.3389/fnut.2021.709683.
    [25] CAI H, QIN YL, SHI ZY, et al. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial[J]. BMC Gastroenterol, 2019, 19(1): 219. DOI: 10.1186/s12876-019-1132-8.
    [26] ZHANG W, WANG J, WANG L, et al. Alternate-day fasting prevents non-alcoholic fatty liver disease and working memory impairment in diet-induced obese mice[J]. J Nutr Biochem, 2022, 110: 109146. DOI: 10.1016/j.jnutbio.2022.109146.
    [27] JIANG Y, YANG X, DONG C, et al. Five-day water-only fasting decreased metabolic-syndrome risk factors and increased anti-aging biomarkers without toxicity in a clinical trial of normal-weight individuals[J]. Clin Transl Med, 2021, 11(8): e502. DOI: 10.1002/ctm2.502.
    [28] ENDLE H, HORTA G, STUTZ B, et al. AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids[J]. Nat Metab, 2022, 4(6): 683-692. DOI: 10.1038/s42255-022-00589-7.
    [29] NISHI T, BABAZONO A, MAEDA T, et al. Effects of eating fast and eating before bedtime on the development of nonalcoholic fatty liver disease[J]. Popul Health Manag, 2016, 19(4): 279-283. DOI: 10.1089/pop.2015.0088.
    [30] LEE S, KO BJ, GONG Y, et al. Self-reported eating speed in relation to non-alcoholic fatty liver disease in adults[J]. Eur J Nutr, 2016, 55(1): 327-333. DOI: 10.1007/s00394-015-0851-z.
    [31] CAO X, GU Y, BIAN S, et al. Association between eating speed and newly diagnosed nonalcoholic fatty liver disease among the general population[J]. Nutr Res, 2020, 80: 78-88. DOI: 10.1016/j.nutres.2020.06.012.
    [32] HURST Y, FUKUDA H. Effects of changes in eating speed on obesity in patients with diabetes: a secondary analysis of longitudinal health check-up data[J]. BMJ Open, 2018, 8(1): e019589. DOI: 10.1136/bmjopen-2017-019589.
    [33] LIEM DG, RUSSELL CG. The influence of taste liking on the consumption of nutrient rich and nutrient poor foods[J]. Front Nutr, 2019, 6: 174. DOI: 10.3389/fnut.2019.00174.
    [34] MAY CE, DUS M. Confection confusion: interplay between diet, taste, and nutrition[J]. Trends Endocrinol Metab, 2021, 32(2): 95-105. DOI: 10.1016/j.tem.2020.11.011.
    [35] MAGKOS F, HJORTH MF, ASTRUP A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2020, 16(10): 545-555. DOI: 10.1038/s41574-020-0381-5.
    [36] van LANGEVELD AWB, GIBBONS S, KOELLIKER Y, et al. The relationship between taste and nutrient content in commercially available foods from the United States[J]. Food Qual Prefer, 2017, 57: 1-7. DOI: 10.1016/j.foodqual.2016.10.012.
    [37] AYOUB-CHARETTE S, CHIAVAROLI L, LIU Q, et al. Different food sources of fructose-containing sugars and fasting blood uric acid levels: a systematic review and meta-analysis of controlled feeding trials[J]. J Nutr, 2021, 151(8): 2409-2421. DOI: 10.1093/jn/nxab144.
    [38] ASGARI-TAEE F, ZERAFATI-SHOAE N, DEHGHANI M, et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis[J]. Eur J Nutr, 2019, 58(5): 1759-1769. DOI: 10.1007/s00394-018-1711-4.
    [39] JENSEN T, ABDELMALEK MF, SULLIVAN S, et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 68(5): 1063-1075. DOI: 10.1016/j.jhep.2018.01.019.
    [40] WU HT, LIN CH, PAI HL, et al. Sucralose, a non-nutritive artificial sweetener exacerbates high fat diet-induced hepatic steatosis through taste receptor type 1 member 3[J]. Front Nutr, 2022, 9: 823723. DOI: 10.3389/fnut.2022.823723.
    [41] XU J, MAO F. Role of high-salt diet in non-alcoholic fatty liver disease: a mini-review of the evidence[J]. Eur J Clin Nutr, 2022, 76(8): 1053-1059. DOI: 10.1038/s41430-021-01044-8.
    [42] LANASPA MA, KUWABARA M, ANDRES-HERNANDO A, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism[J]. Proc Natl Acad Sci U S A, 2018, 115(12): 3138-3143. DOI: 10.1073/pnas.1713837115.
    [43] ZHOU L, YANG Y, FENG Y, et al. Association between dietary sodium intake and non-alcoholic fatty liver disease in the US population[J]. Public Health Nutr, 2021, 24(5): 993-1000. DOI: 10.1017/S136898001900483X.
    [44] SHEN X, JIN C, WU Y, et al. Prospective study of perceived dietary salt intake and the risk of non-alcoholic fatty liver disease[J]. J Hum Nutr Diet, 2019, 32(6): 802-809. DOI: 10.1111/jhn.12674.
    [45] van den BERG EH, GRUPPEN EG, BLOKZIJL H, et al. Higher sodium intake assessed by 24 hour urinary sodium excretion is associated with non-alcoholic fatty liver disease: the PREVEND cohort study[J]. J Clin Med, 2019, 8(12): 2157. DOI: 10.3390/jcm8122157.
    [46] Report on Nutrition and Chronic Diseases of Chinese Residents (2020)[J]. Acta Nutrimenta Sinica, 2020, 42(6): 521.

    中国居民营养与慢性病状况报告(2020年)[J]. 营养学报, 2020, 42(6): 521.
    [47] NAKANISHI Y, TSUNEYAMA K, FUJIMOTO M, et al. Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia[J]. J Autoimmun, 2008, 30(1-2): 42-50. DOI: 10.1016/j.jaut.2007.11.016.
    [48] ANDRES-HERNANDO A, CICERCHI C, KUWABARA M, et al. Umami-induced obesity and metabolic syndrome is mediated by nucleotide degradation and uric acid generation[J]. Nat Metab, 2021, 3(9): 1189-1201. DOI: 10.1038/s42255-021-00454-z.
    [49] MARKOVA M, PIVOVAROVA O, HORNEMANN S, et al. Isocaloric diets high in animal or plant protein reduce liver fat and inflammation in individuals with type 2 diabetes[J]. Gastroenterology, 2017, 152(3): 571-585. e8. DOI: 10.1053/j.gastro.2016.10.007.
    [50] WU XX, WANG T, DU SN, et al. Intervention effect of isocalorie low carbohydrate high protein diet on nonalcoholic fatty liver disease[J]. Chin Hepatol, 2022, 27(6): 688-692. DOI: 10.3969/j.issn.1008-1704.2022.06.021.

    吴小溪, 汪涛, 杜晟楠, 等. 等热量低碳水化合物高蛋白饮食对非酒精性脂肪肝的干预作用[J]. 肝脏, 2022, 27(6): 688-692. DOI: 10.3969/j.issn.1008-1704.2022.06.021.
    [51] HARTLEY IE, LIEM DG, KEAST R. Umami as an 'alimentary' taste. a new perspective on taste classification[J]. Nutrients, 2019, 11(1): 182. DOI: 10.3390/nu11010182.
    [52] VANCELLS LUJAN P, VIÑAS ESMEL E, SACANELLA MESEGUER E. Overview of non-alcoholic fatty liver disease (NAFLD) and the role of sugary food consumption and other dietary components in its development[J]. Nutrients, 2021, 13(5): 1442. DOI: 10.3390/nu13051442.
  • 加载中
计量
  • 文章访问数:  622
  • HTML全文浏览量:  431
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 录用日期:  2022-09-13
  • 出版日期:  2023-02-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回