中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝细胞癌患者外周血CD100的表达变化及其对T淋巴细胞的功能调控

范慧娟 宋淳

引用本文:
Citation:

肝细胞癌患者外周血CD100的表达变化及其对T淋巴细胞的功能调控

DOI: 10.3969/j.issn.1001-5256.2023.01.019
伦理学声明:本研究方案于2020年4月16日经空军军医大学第二附属医院伦理委员会批准,批号:TDLL-202002-038,所有患者或家属行告知并签署知情同意书。
利益冲突声明:本研究不存在研究者、伦理委员会成员以及与公开研究成果有关的利益冲突。
作者贡献声明:范慧娟负责实验操作,数据分析和论文撰写;宋淳负责课题设计、指导论文撰写并最后定稿。
详细信息
    通信作者:

    宋淳,7902818098@qq.com (ORCID: 0000-0001-7896-1571)

Expression of peripheral CD100 and its regulation to T lymphocytes function in patients with hepatocellular carcinoma

More Information
  • 摘要:   目的  观察肝细胞癌(HCC)患者外周血CD100的变化,探讨CD100对HCC患者T淋巴细胞功能的调控作用。  方法  前瞻性选择2020年4月—2021年7月在空军军医大学第二附属医院就诊的HCC患者57例和对照者22例。采集抗凝外周血,分离血浆和外周血单个核细胞(PBMC),酶联免疫吸附试验检测血浆可溶型CD100(sCD100)水平,流式细胞术检测CD4+和CD8+T淋巴细胞表面膜型CD100(mCD100)表达。使用重组人CD100刺激HCC患者PBMC,细胞计数试剂盒-8法检测细胞增殖,流式细胞术检测不同类型辅助性T淋巴细胞(Th细胞)和杀伤性T淋巴细胞(Tc细胞)比例,酶联斑点吸附试验检测甲胎蛋白(AFP)特异性CD8+T淋巴细胞分泌穿孔素和颗粒酶B水平。纯化HCC患者CD8+T淋巴细胞,使用重组人CD100刺激后与HepG2细胞共培养,检测AFP特异性CD8+T淋巴细胞诱导HepG2细胞死亡水平。符合正态分布的计量资料两组间比较采用t检验或配对t检验;不符合正态分布的计量资料两组间比较采用Mann-Whitney U秩和检验。计数资料两组间比较采用χ2检验。  结果  HCC组血浆sCD100水平低于对照组[(2.73±0.58)ng/mL vs(3.33±0.84)ng/mL,t=3.584,P<0.001]。HCC组CD4+T淋巴细胞中mCD100阳性细胞比例(55.57%±11.33% vs 43.67%±6.40%,t=4.636,P<0.001)和mCD100平均荧光强度(294.80±74.01 vs 255.00±74.01,t=2.126,P=0.037)均高于对照组。HCC组CD8+T淋巴细胞中mCD100阳性细胞比例(48.65%±7.71% vs 41.74%±4.77%,t=3.914,P<0.001)和mCD100平均荧光强度(289.20±89.30 vs 246.10±60.73,t=2.082,P=0.041)亦均高于对照组。HCC患者PBMC增殖、T淋巴细胞比例在经CD100刺激和无CD100刺激之间差异无统计学意义(P值均>0.05)。经CD100刺激后,HCC患者PBMC中CD4+IFNγ+Th1细胞、CD4+IL-17A+Th17细胞、CD4+IL-22+Th22细胞、CD8+IFNγ+Tc1细胞比例均高于无CD100刺激(t值分别为2.608、5.663、4.113、4605,P值均<0.05),CD8+IL-17A+Tc17细胞和CD8+IL-22+Tc22细胞比例在经CD100刺激和无CD100刺激之间的差异无统计学意义(P值均>0.05)。HLA-A02限制性HCC患者的PBMC经CD100刺激后,AFP特异性CD8+T淋巴细胞分泌穿孔素和颗粒酶B的细胞数量均高于无CD100刺激(t值分别为6.794、2.308,P值均<0.05)。CD100刺激后,AFP特异性CD8+T淋巴细胞诱导HepG2细胞死亡的比例亦升高(P<0.05)。  结论  HCC患者中存在sCD100和T淋巴细胞中mCD100表达失衡,sCD100水平降低可能无法维持T淋巴细胞功能活性,造成HCC免疫耐受。

     

  • 图  1  对照组和HCC组CD4+和CD8+T淋巴细胞表面mCD100表达流式细胞检测

    Figure  1.  Flow cytometry analyses of mCD100 expression on CD4+ and CD8+ T cells in control group and HCC group

    图  2  HCC患者PBMC无CD100刺激和经CD100刺激后辅助性CD4+T淋巴细胞亚群的检测

    Figure  2.  Analyses of helper CD4+ T lymphocyte subsets in PBMC from HCC patients with and without CD100 stimulation

    图  3  HCC患者PBMC无CD100刺激和经CD100刺激后杀伤性CD8+T淋巴细胞亚群的检测

    Figure  3.  Analyses of cytotoxic CD8+ T lymphocyte subsets in PBMC from HCC patients with and without CD100 stimulation

    表  1  患者的一般临床资料

    Table  1.   General clinical data for enrolled subjects

    项目 对照组(n=22) HCC组(n=57) 统计值 P
    男/女(例) 17/5 44/13 χ2=0.739 0.690
    年龄(岁) 47.0±10.7 48.4±12.6 t=0.461 0.646
    AFP(ng/mL) 4(2~5) 1227(719~>65 000) U=9.088 <0.001
    BCLC分期(A/B/C/D,例) 17/21/11/8
    注:BCLC,巴塞罗那临床肝癌分期。
    下载: 导出CSV

    表  2  对照组和HCC组中血浆sCD100、CD4+和CD8+T淋巴细胞中mCD100表达比较

    Table  2.   Comparison of plasma sCD100 and mCD100 expression on CD4+ and CD8+ T cells between control group and HCC group

    项目 对照组(n=22) HCC组(n=57) t P
    血浆sCD100(ng/mL) 3.33±0.84 2.73±0.58 3.584 <0.001
    CD4+mCD100+比例(%) 43.67±6.40 55.57±11.33 4.636 <0.001
    CD4+mCD100 MFI 255.00±74.01 294.80±74.01 2.126 0.037
    CD8+mCD100+比例(%) 41.74±4.77 48.65±7.71 3.914 <0.001
    CD8+mCD100 MFI 246.10±60.73 289.20±89.30 2.082 0.041
    下载: 导出CSV

    表  3  重组人CD100对HCC患者PBMC细胞增殖和T淋巴细胞比例的影响

    Table  3.   The influence of recombinant human CD100 to PBMC cellular stimulation and T lymphocytes percentage in HCC patients

    项目 无CD100刺激 经CD100刺激 t P
    细胞增殖(×106个) 0.75±0.10 0.72±0.12 0.850 0.399
    CD4+T淋巴细胞比例(%) 33.34±7.86 36.00±7.52 1.271 0.210
    CD8+T淋巴细胞比例(%) 29.54±6.51 30.81±6.45 0.725 0.472
    下载: 导出CSV

    表  4  重组人CD100对HCC患者PBMC中Th细胞和Tc细胞亚群的影响

    Table  4.   The influence of recombinant human CD100 to Th cells and Tc cell subsets in PBMC from HCC patients

    项目 无CD100刺激 经CD100刺激 t P
    CD4+IFNγ+Th1(%) 4.85±1.28 6.47±2.97 2.608 0.012
    CD4+IL-17A+Th17(%) 5.62±1.04 7.28±1.12 5.663 <0.001
    CD4+IL-22+Th22(%) 3.70±0.90 4.84±1.13 4.113 <0.001
    CD8+IFNγ+Tc1(%) 2.84±1.02 3.91±0.65 4.605 <0.001
    CD8+IL-17A+Tc17(%) 2.69±0.88 2.57±0.90 0.492 0.625
    CD8+IL-22+Tc22(%) 1.13±0.20 1.15±0.15 0.406 0.687
    下载: 导出CSV

    表  5  重组人CD100对HCC患者AFP特异性CD8+T淋巴细胞分泌穿孔素和颗粒酶B的影响

    Table  5.   The influence of recombinant human CD100 to perforin and granzyme B by AFP specific CD8+ T cells in HCC patients

    项目 无CD100刺激 经CD100刺激 t P
    穿孔素+(SFC/106个) 52.45±15.09 132.50±36.07 6.794 <0.001
    颗粒酶B+(SFC/106个) 161.10±60.84 240.50±96.64 2.308 0.032
    注:SFC,斑点形成细胞。
    下载: 导出CSV
  • [1] Chinese Society of Hepatology, Chinese Medical Association. Consensus on the secondary prevention for primary liver cancer (2021 edition)[J]. J Clin Hepatol, 2021, 37(3): 532-542. DOI: 10.3969/j.issn.1001-5256.2021.03.008.

    中华医学会肝病学分会. 原发性肝癌二级预防共识(2021年版)[J]. 临床肝胆病杂志, 2021, 37(3): 532-542. DOI: 10.3969/j.issn.1001-5256.2021.03.008.
    [2] KALATHIL SG, THANAVALA Y. Natural killer cells and T cells in hepatocellular carcinoma and viral hepatitis: current status and perspectives for future immunotherapeutic approaches[J]. Cells, 2021, 10(6): 1332. DOI: 10.3390/cells10061332.
    [3] YANG S, WANG L, PAN W, et al. MMP2/MMP9-mediated CD100 shedding is crucial for inducing intrahepatic anti-HBV CD8 T cell responses and HBV clearance[J]. J Hepatol, 2019, 71(4): 685-698. DOI: 10.1016/j.jhep.2019.05.013.
    [4] LI BJ, HE Y, ZHANG Y, et al. Interferon-α-induced CD100 on naïve CD8+ T cells enhances antiviral responses to hepatitis C infection through CD72 signal transduction[J]. J Int Med Res, 2017, 45(1): 89-100. DOI: 10.1177/0300060516676136.
    [5] ZHANG DN, LIU Y, LI X, et al. Imbalance between soluble and membrane-bound CD100 regulates monocytes activity in hepatitis B virus-associated acute-on-chronic liver failure[J]. Viral Immunol, 2021, 34(4): 273-283. DOI: 10.1089/vim.2020.0311.
    [6] WANG HM, ZHANG XH, YE LQ, et al. Insufficient CD100 shedding contributes to suppression of CD8+ T-cell activity in non-small cell lung cancer[J]. Immunology, 2020, 160(2): 209-219. DOI: 10.1111/imm.13189.
    [7] Bureau of Medical Administration, National Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition)[J]. J Clin Hepatol, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.

    中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 临床肝胆病杂志, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.
    [8] YANG L, SHAO X, JIA S, et al. Interleukin-35 dampens CD8+ T cells activity in patients with non-viral hepatitis-related hepatocellular carcinoma[J]. Front Immunol, 2019, 10: 1032. DOI: 10.3389/fimmu.2019.01032.
    [9] LIU H, YANG Y, XIAO J, et al. Semaphorin 4D expression is associated with a poor clinical outcome in cervical cancer patients[J]. Microvasc Res, 2014, 93: 1-8. DOI: 10.1016/j.mvr.2014.02.007.
    [10] CHEN Y, ZHANG L, LV R, et al. Overexpression of Semaphorin4D indicates poor prognosis and prompts monocyte differentiation toward M2 macrophages in epithelial ovarian cancer[J]. Asian Pac J Cancer Prev, 2013, 14(10): 5883-5890. DOI: 10.7314/apjcp.2013.14.10.5883.
    [11] LU JJ, SU YW, WANG CJ, et al. Semaphorin 4D promotes the proliferation and metastasis of bladder cancer by activating the PI3K/AKT pathway[J]. Tumori, 2019, 105(3): 231-242. DOI: 10.1177/0300891618811280.
    [12] CHEN WG, SUN J, SHEN WW, et al. Sema4D expression and secretion are increased by HIF-1α and inhibit osteogenesis in bone metastases of lung cancer[J]. Clin Exp Metastasis, 2019, 36(1): 39-56. DOI: 10.1007/s10585-018-9951-5.
    [13] LIU B, MA Y, ZHANG Y, et al. CD8low CD100- T cells identify a novel CD8 T cell subset associated with viral control during human hantaan virus infection[J]. J Virol, 2015, 89(23): 11834-11844. DOI: 10.1128/JVI.01610-15.
    [14] YOSHIDA Y, OGATA A, KANG S, et al. Semaphorin 4D contributes to rheumatoid arthritis by inducing inflammatory cytokine production: pathogenic and therapeutic implications[J]. Arthritis Rheumatol, 2015, 67(6): 1481-1490. DOI: 10.1002/art.39086.
    [15] GANG HS, PENG DF, HU YJ, et al. Regulation of CD100 on T lymphocytes function in septic cardiomyopathy patients[J]. Clin J Emerg Med, 2020, 29(11): 1432-1438. DOI: 10.3760/cma.j.issn.1671-0282.2020.11.009.

    冮洪生, 彭定凤, 胡勇钧, 等. CD100对脓毒性心肌病患者T淋巴细胞功能的调控作用[J]. 中华急诊医学杂志, 2020, 29(11): 1432-1438. DOI: 10.3760/cma.j.issn.1671-0282.2020.11.009.
    [16] FRANCO F, JACCARD A, ROMERO P, et al. Metabolic and epigenetic regulation of T-cell exhaustion[J]. Nat Metab, 2020, 2(10): 1001-1012. DOI: 10.1038/s42255-020-00280-9.
    [17] DONISI C, PUZZONI M, ZIRANU P, et al. Immune checkpoint inhibitors in the treatment of HCC[J]. Front Oncol, 2020, 10: 601240. DOI: 10.3389/fonc.2020.601240.
    [18] LI M, O'SULLIVAN KM, JONES LK, et al. CD100 enhances dendritic cell and CD4+ cell activation leading to pathogenetic humoral responses and immune complex glomerulonephritis[J]. J Immunol, 2006, 177(5): 3406-3412. DOI: 10.4049/jimmunol.177.5.3406.
    [19] ST PAUL M, OHASHI PS. The roles of CD8+ T cell subsets in antitumor immunity[J]. Trends Cell Biol, 2020, 30(9): 695-704. DOI: 10.1016/j.tcb.2020.06.003.
    [20] IWAHORI K. Cytotoxic CD8+ lymphocytes in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1224: 53-62. DOI: 10.1007/978-3-030-35723-8_4.
    [21] LI Y, QIN L, BAI Q, et al. CD100 modulates cytotoxicity of CD8+ T cells in patients with acute myocardial infarction[J]. BMC Immunol, 2021, 22(1): 13. DOI: 10.1186/s12865-021-00406-y.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1588
  • HTML全文浏览量:  1222
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-19
  • 录用日期:  2022-07-22
  • 出版日期:  2023-01-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回