中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化应激在急性肝损伤中的作用

廖月 何毅怀 罗亚文

引用本文:
Citation:

氧化应激在急性肝损伤中的作用

DOI: 10.3969/j.issn.1001-5256.2022.10.039
基金项目: 

国家自然科学基金 (82160370);

国家自然科学基金 (81560110);

贵州省科技计划项目 (Qian Ke He Ji Chu -ZK〔2022〕 Yi Ban 642)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:廖月负责查阅文献及撰写文章;何毅怀、罗亚文参与修改文章的关键内容。
详细信息
    通信作者:

    罗亚文,luoyw719@163.com

Role of oxidative stress in acute liver injury

Research funding: 

National Natural Science Foundation of China (82160370);

National Natural Science Foundation of China (81560110);

Science and Technology Plan Project of Guizhou Province (Qian Ke He Ji Chu -ZK〔2022〕 Yi Ban 642)

More Information
  • 摘要: 急性肝损伤常由病毒感染、酒精、药物、毒物、代谢异常等原因引起。氧化应激是急性肝损伤及其他肝病发生发展的共同病理生理机制。急性肝损伤发生后,肝细胞功能受损,引起氧化应激;而持续或高强度的氧化应激将增加肝细胞死亡的风险,导致一系列肝脏疾病。氧化应激主要与Nrf2、NF-κB等信号通路相关。因此,了解氧化应激参与肝损伤的发生发展机制及相关通路至关重要。本文介绍了氧化系统及抗氧化系统、氧化应激与损伤因素、氧化应激与肝损伤相关通路,以期为急性肝损伤的治疗靶点选择及相关临床研究提供参考。

     

  • 图  1  线粒体氧化磷酸化生成电子与抗氧化剂清除O2-的简要示意图

    Figure  1.  Brief schematic figure of generation of electrons by mitochonrial oxidative phosphorylation and O2- scavenging by antioxidants

    图  2  损伤因素与氧化应激简要示意图

    Figure  2.  Brief schematic figure of damage factor and oxidative stress

    图  3  氧化应激主要通路简要示意图

    Figure  3.  Brief schematic figure of main pathway of oxdative stress

  • [1] SHRESTHA DB, BUDHATHOKI P, SEDHAI YR, et al., N-acetyl cysteine versus standard of care for non-acetaminophen induced acute liver injury: a systematic review and meta-analysis[J]. Ann Hepatol, 2021, 24: 100340. DOI: 10.1016/j.aohep.2021.100340.
    [2] XU FL, XU JX, XIONG X, et al. Salidroside inhibits MAPK, NF-kappaB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation[J]. Redox Rep, 2019, 24(1): 70-74. DOI: 10.1080/13510002.2019.1658377.
    [3] SEEN S. Chronic liver disease and oxidative stress-a narrative review[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(9): 1021-1035. DOI: 10.1080/17474124.2021.1949289.
    [4] ZHONG X, ZHANG Z, SHEN H, et al. Hepatic NF-κB-inducing kinase and inhibitor of NF-κB kinase subunit α promote liver oxidative stress, ferroptosis, and liver injury[J]. Hepatol Commun, 2021, 5(10): 1704-1720. DOI: 10.1002/hep4.1757.
    [5] SINGH A, KUKRETI R, SASO L, et al. Oxidative stress: a key modulator in neurodegenerative diseases[J]. Molecules, 2019, 24(8): 1583. DOI: 10.3390/molecules24081583.
    [6] FOO BJ, EU JQ, HIRPARA JL, et al. Interplay between mitochondrial metabolism and cellular redox state dictates cancer cell survival[J]. Oxid Med Cell Longev, 2021, 2021: 1341604. DOI: 10.1155/2021/1341604.
    [7] HAJAM YA, RANI R, GANIE SY, et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives[J]. Cells, 2022, 11(3): 552. DOI: 10.3390/cells11030552.
    [8] JUAN CA, PÉREZ DE LA LASTRA JM, PLOU FJ, et al. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies[J]. Int J Mol Sci, 2021, 22(9): 4642. DOI: 10.3390/ijms22094642.
    [9] NOLFI-DONEGAN D, BRAGANZA A, SHIVA S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement[J]. Redox Biol, 2020, 37: 101674. DOI: 10.1016/j.redox.2020.101674.
    [10] VALLEJO FA, VANNI S, GRAHAM RM. UCP2 as a potential biomarker for adjunctive metabolic therapies in tumor management[J]. Front Oncol, 2021, 11: 640720. DOI: 10.3389/fonc.2021.640720.
    [11] YING JF, LU ZB, FU LQ, et al. The role of iron homeostasis and iron-mediated ROS in cancer[J]. Am J Cancer Res, 2021, 11(5): 1895-1912.
    [12] ZHANG Z, RONG L, LI YP. Flaviviridae viruses and oxidative stress: implications for viral pathogenesis[J]. Oxid Med Cell Longev, 2019, 2019: 1409582. DOI: 10.1155/2019/1409582.
    [13] TANIMIZU N, ICHINOHE N, SUZUKI H, et al. Prolonged oxidative stress and delayed tissue repair exacerbate acetaminophen-induced liver injury in aged mice[J]. Aging (Albany NY), 2020, 12(19): 18907-18927. DOI: 10.18632/aging.103973.
    [14] TODOROVI C ' VUKOTI C ' N, -DOR-DEVI C ' J, PEJI C ' S, et al. Antidepressants-and antipsychotics-induced hepatotoxicity[J]. Arch Toxicol, 2021, 95(3): 767-789. DOI: 10.1007/s00204-020-02963-4.
    [15] HAN H, DESERT R, DAS S, et al. Danger signals in liver injury and restoration of homeostasis[J]. J Hepatol, 2020, 73(4): 933-951. DOI: 10.1016/j.jhep.2020.04.033.
    [16] FAN X, LIN L, CUI B, et al. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: More friend than foe[J]. Pharmacol Res, 2020, 159: 104945. DOI: 10.1016/j.phrs.2020.104945.
    [17] DUYGU F, KARSEN H, AKSOY N, et al. Relationship of oxidative stress in hepatitis B infection activity with HBV DNA and fibrosis[J]. Ann Lab Med, 2012, 32(2): 113-118. DOI: 10.3343/alm.2012.32.2.113.
    [18] XIANYU J, FENG J, YANG Y, et al. Correlation of oxidative stress in patients with HBV-induced liver disease with HBV genotypes and drug resistance mutations[J]. Clin Biochem, 2018, 55: 21-27. DOI: 10.1016/j.clinbiochem.2018.03.014.
    [19] HERRSCHER C, ROINGEARD P, BLANCHARD E. Hepatitis B virus entry into cells[J]. Cells, 2020, 9(6): 1486. DOI: 10.3390/cells9061486.
    [20] ALMAEEN AH, ALDURAYWISH AA, MOBASHER MA, et al. Oxidative stress, immunological and cellular hypoxia biomarkers in hepatitis C treatment-naïve and cirrhotic patients[J]. Arch Med Sci, 2021, 17(2): 368-375. DOI: 10.5114/aoms.2019.91451.
    [21] SOBHANIMONFARED F, BAMDAD T, ROOHVAND F. Cross talk between alcohol-induced oxidative stress and HCV replication[J]. Arch Microbiol, 2020, 202(7): 1889-1898. DOI: 10.1007/s00203-020-01909-9.
    [22] GRAVIER-HERNÁNDEZ R, GIL-DEL VALLE L, VALDES-ALONSO L, et al. Oxidative stress in hepatitis C virus-human immunodeficiency virus co-infected patients[J]. Ann Hepatol, 2020, 19(1): 92-98. DOI: 10.1016/j.aohep.2019.05.009.
    [23] RAMÍREZ A, VÁZQUEZ-SÁNCHEZ AY, CARRIÓN-ROBALINO N, et al. Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases[J]. Oxid Med Cell Longev, 2016, 2016: 3928714. DOI: 10.1155/2016/3928714.
    [24] GOU SH, HE M, LI BB, et al. Hepatoprotective effect of total flavonoids from Glycyrrhiza uralensis Fisch in liver injury mice[J]. Nat Prod Res, 2021, 35(24): 6083-6087. DOI: 10.1080/14786419.2020.1824223.
    [25] TAN HK, YATES E, LILLY K, et al. Oxidative stress in alcohol-related liver disease[J]. World J Hepatol, 2020, 12(7): 332-349. DOI: 10.4254/wjh.v12.i7.332.
    [26] WAN YM, WU HM, LI YH, et al. Corrigendum: TSG-6 inhibits oxidative stress and induces M2 polarization of hepatic macrophages in mice with alcoholic hepatitis via suppression of STAT3 activation[J]. Front Pharmacol, 2020, 11: 569. DOI: 10.3389/fphar.2020.00569.
    [27] HSU MF, KOIKE S, MELLO A, et al. Hepatic protein-tyrosine phosphatase 1B disruption and pharmacological inhibition attenuate ethanol-induced oxidative stress and ameliorate alcoholic liver disease in mice[J]. Redox Biol, 2020, 36: 101658. DOI: 10.1016/j.redox.2020.101658.
    [28] DONATO M, TOLOSA L. High-content screening for the detection of drug-induced oxidative stress in liver cells[J]. Antioxidants (Basel), 2021, 10(1): 106. DOI: 10.3390/antiox10010106.
    [29] GHANIM BY, AHMAD MI, ABDALLAH QM, et al. Modulation of NRF2/ARE pathway-and cell death-related genes during drug-induced liver injury[J]. Hum Exp Toxicol, 2021, 40(12): 2223-2236. DOI: 10.1177/09603271211027947.
    [30] VILLANUEVA-PAZ M, MORÁN L, LÓPEZ-ALCÁNTARA N, et al. Oxidative stress in drug-induced liver injury (DILI): From mechanisms to biomarkers for use in clinical practice[J]. Antioxidants (Basel), 2021, 10(3): 390. DOI: 10.3390/antiox10030390.
    [31] UNSAL V, CICEK M, SABANCILAR I ·. Toxicity of carbon tetrachloride, free radicals and role of antioxidants[J]. Rev Environ Health, 2021, 36(2): 279-295. DOI: 10.1515/reveh-2020-0048.
    [32] EZHILARASAN D, RAGHUNANDHAKUMAR S. Boldine treatment protects acetaminophen-induced liver inflammation and acute hepatic necrosis in mice[J]. J Biochem Mol Toxicol, 2021, 35(4): e22697. DOI: 10.1002/jbt.22697.
    [33] XU D, XU M, JEONG S, et al. The role of Nrf2 in liver disease: novel molecular mechanisms and therapeutic approaches[J]. Front Pharmacol, 2018, 9: 1428. DOI: 10.3389/fphar.2018.01428.
    [34] YI G, DIN JU, ZHAO F, et al. Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling[J]. Food Funct, 2020, 11(3): 2725-2737. DOI: 10.1039/c9fo01466g.
    [35] SENTHIL KUMAR KJ, LIAO JW, XIAO JH, et al. Hepatoprotective effect of lucidone against alcohol-induced oxidative stress in human hepatic HepG2 cells through the up-regulation of HO-1/Nrf-2 antioxidant genes[J]. Toxicol In Vitro, 2012, 26(5): 700-708. DOI: 10.1016/j.tiv.2012.03.012.
    [36] GONG P, CEDERBAUM AI. Nrf2 is increased by CYP2E1 in rodent liver and HepG2 cells and protects against oxidative stress caused by CYP2E1[J]. Hepatology, 2006, 43(1): 144-153. DOI: 10.1002/hep.21004.
    [37] YU Z, YANG L, DENG S, et al. Daidzein ameliorates LPS-induced hepatocyte injury by inhibiting inflammation and oxidative stress[J]. Eur J Pharmacol, 2020, 885: 173399. DOI: 10.1016/j.ejphar.2020.173399.
    [38] LV H, ZHU C, WEI W, et al. Enhanced Keap1-Nrf2/Trx-1 axis by daphnetin protects against oxidative stress-driven hepatotoxicity via inhibiting ASK1/JNK and Txnip/NLRP3 inflammasome activation[J]. Phytomedicine, 2020, 71: 153241. DOI: 10.1016/j.phymed.2020.153241.
    [39] HU J, ZHU Z, YING H, et al. Oleoylethanolamide protects against acute liver injury by regulating Nrf-2/HO-1 and NLRP3 pathways in mice[J]. Front Pharmacol, 2020, 11: 605065. DOI: 10.3389/fphar.2020.605065.
    [40] MITCHELL S, VARGAS J, HOFFMANN A. Signaling via the NF-κB system[J]. Wiley Interdiscip Rev Syst Biol Med, 2016, 8(3): 227-241. DOI: 10.1002/wsbm.1331.
    [41] LONG X, SONG J, ZHAO X, et al. Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress-mediated NF-κB signaling[J]. Food Sci Nutr, 2020, 8(1): 237-245. DOI: 10.1002/fsn3.1296.
    [42] WANG M, NIU J, OU L, et al. Zerumbone protects against carbon tetrachloride (CCl4)-induced acute liver injury in mice via inhibiting oxidative stress and the inflammatory response: involving the TLR4/NF-κB/COX-2 pathway[J]. Molecules, 2019, 24(10): 1964. DOI: 10.3390/molecules24101964.
    [43] LI R, YANG W, YIN Y, et al. Protective Role of 4-Octyl itaconate in murine LPS/D-GalN-induced acute liver failure via inhibiting inflammation, oxidative stress, and apoptosis[J]. Oxid Med Cell Longev, 2021, 2021: 9932099. DOI: 10.1155/2021/9932099.
    [44] ZHANG L, MENG B, LI L, et al. Boletus aereus protects against acute alcohol-induced liver damage in the C57BL/6 mouse via regulating the oxidative stress-mediated NF-κB pathway[J]. Pharm Biol, 2020, 58(1): 905-914. DOI: 10.1080/13880209.2020.1812672.
    [45] LIU Z, WANG X, LI L, et al. Hydrogen sulfide protects against paraquat-induced acute liver injury in rats by regulating oxidative stress, mitochondrial function, and inflammation[J]. Oxid Med Cell Longev, 2020, 2020: 6325378. DOI: 10.1155/2020/6325378.
  • 加载中
图(3)
计量
  • 文章访问数:  874
  • HTML全文浏览量:  636
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-27
  • 录用日期:  2022-04-02
  • 出版日期:  2022-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回