中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌合抗原受体T淋巴细胞免疫疗法在原发性肝癌中的应用

李康伟 尉丁 张若涵 李霄 陶开山

引用本文:
Citation:

嵌合抗原受体T淋巴细胞免疫疗法在原发性肝癌中的应用

DOI: 10.3969/j.issn.1001-5256.2022.10.036
基金项目: 

国家自然科学基金 (82170667);

国家自然科学基金 (81970566)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:李康伟起草并撰写文章主要内容;尉丁负责协助补充文献并完善文章内容;张若涵负责主要内容修改;李霄协助文章修改及审校;陶开山指导文章思路并修改了文章关键内容。
详细信息
    通信作者:

    陶开山,taokaishan0686@163.com

Application of chimeric antigen receptor T-cell immunotherapy in primary liver cancer

Research funding: 

National Natural Science Foundation of China (82170667);

National Natural Science Foundation of China (81970566)

More Information
  • 摘要: 原发性肝癌具有恶性程度高、进展快、易复发转移和病死率高等特点,因此大多数患者就诊时已发生肝内或肝外转移,失去手术治疗机会。嵌合抗原受体T淋巴细胞(CAR-T)免疫疗法已在B细胞急性淋巴性白血病治疗中取得了较好的效果,其在原发性肝癌、胰腺癌、胃癌以及前列腺癌等实体瘤中的应用也陆续开展了临床试验。本文综述了CAR-T免疫疗法在原发性肝癌临床试验中的疗效,并讨论了其在临床应用中需攻克的难题,如缺乏适宜的肿瘤靶点、肿瘤微环境对CAR-T的抑制作用以及CAR-T对肿瘤组织的浸润性差等,以期为临床研究提供参考。

     

  • [1] LLOVET JM, ZUCMAN-ROSSI J, PIKARSKY E, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2016, 2: 16018. DOI: 10.1038/nrdp.2016.18.
    [2] SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
    [3] DEMIR T, LEE SS, KASEB AO. Systemic therapy of liver cancer[J]. Adv Cancer Res, 2021, 149: 257-294. DOI: 10.1016/bs.acr.2020.12.001.
    [4] ZHONG JH, LI H, LI LQ, et al. Adjuvant therapy options following curative treatment of hepatocellular carcinoma: a systematic review of randomized trials[J]. Eur J Surg Oncol, 2012, 38(4): 286-295. DOI: 10.1016/j.ejso.2012.01.006.
    [5] LLOVET JM, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(4): 378-390. DOI: 10.1056/NEJMoa0708857.
    [6] GALON J, BRUNI D. Tumor immunology and tumor evolution: Intertwined histories[J]. Immunity, 2020, 52(1): 55-81. DOI: 10.1016/j.immuni.2019.12.018.
    [7] WALL DA, KRUEGER J. Chimeric antigen receptor T cell therapy comes to clinical practice[J]. Curr Oncol, 2020, 27(Suppl 2): s115-s123. DOI: 10.3747/co.27.5283.
    [8] HOSEN N. Chimeric antigen receptor T-cell therapy for multiple myeloma[J]. Int J Hematol, 2020, 111(4): 530-534. DOI: 10.1007/s12185-020-02827-8.
    [9] ROSELLI E, FARAMAND R, DAVILA ML. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes[J]. J Clin Invest, 2021, 131(2): e142030. DOI: 10.1172/JCI142030.
    [10] KIM DW, CHO JY. Recent advances in allogeneic CAR-T cells[J]. Biomolecules, 2020, 10(2): 263. DOI: 10.3390/biom10020263.
    [11] ABRAMSON JS, MCGREE B, NOYES S, et al. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma[J]. N Engl J Med, 2017, 377(8): 783-784. DOI: 10.1056/NEJMc1704610.
    [12] O'ROURKE DM, NASRALLAH MP, DESAI A, et al. A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]. Sci Transl Med, 2017, 9(399): eaaa0984. DOI: 10.1126/scitranslmed.aaa0984.
    [13] CADILHA BL, BENMEBAREK MR, DORMAN K, et al. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors[J]. Sci Adv, 2021, 7(24): eabi5781. DOI: 10.1126/sciadv.abi5781.
    [14] WEI J, GUO Y, WANG Y, et al. Clinical development of CAR T cell therapy in China: 2020 update[J]. Cell Mol Immunol, 2021, 18(4): 792-804. DOI: 10.1038/s41423-020-00555-x.
    [15] WANG Y, CHEN M, WU Z, et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial[J]. Oncoimmunology, 2018, 7(7): e1440169. DOI: 10.1080/2162402X.2018.1440169.
    [16] SHI D, SHI Y, KASEB AO, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: Results of phase I trials[J]. Clin Cancer Res, 2020, 26(15): 3979-3989. DOI: 10.1158/1078-0432.CCR-19-3259.
    [17] LIU H, XU Y, XIANG J, et al. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer[J]. Clin Cancer Res, 2017, 23(2): 478-488. DOI: 10.1158/1078-0432.CCR-16-1203.
    [18] LIM WA, JUNE CH. The principles of engineering immune cells to treat cancer[J]. Cell, 2017, 168(4): 724-740. DOI: 10.1016/j.cell.2017.01.016.
    [19] di STASI A, de ANGELIS B, ROONEY CM, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model[J]. Blood, 2009, 113(25): 6392-6402. DOI: 10.1182/blood-2009-03-209650.
    [20] ZHANG RY, WEI D, LIU ZK, et al. Doxycycline inducible chimeric antigen receptor T cells targeting CD147 for hepatocellular carcinoma therapy[J]. Front Cell Dev Biol, 2019, 7: 233. DOI: 10.3389/fcell.2019.00233.
    [21] WANG JY, WANG XK, ZHU GZ, et al. Distinct diagnostic and prognostic values of Glypicans gene expression in patients with hepatocellular carcinoma[J]. BMC Cancer, 2021, 21(1): 462. DOI: 10.1186/s12885-021-08104-z.
    [22] THISTLETHWAITE FC, GILHAM DE, GUEST RD, et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity[J]. Cancer Immunol Immunother, 2017, 66(11): 1425-1436. DOI: 10.1007/s00262-017-2034-7.
    [23] WANG SJ, CHAO D, WEI W, et al. CD147 promotes collective invasion through cathepsin B in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 145. DOI: 10.1186/s13046-020-01647-2.
    [24] BIAN H, ZHENG JS, NAN G, et al. Randomized trial of[131I] metuximab in treatment of hepatocellular carcinoma after percutaneous radiofrequency ablation[J]. J Natl Cancer Inst, 2014, 106(9): dju239. DOI: 10.1093/jnci/dju239.
    [25] CHEN C, LI K, JIANG H, et al. Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2017, 66(4): 475-489. DOI: 10.1007/s00262-016-1949-8.
    [26] TANG XY, DING YS, ZHOU T, et al. Tumor-tagging by oncolytic viruses: A novel strategy for CAR-T therapy against solid tumors[J]. Cancer Lett, 2021, 503: 69-74. DOI: 10.1016/j.canlet.2021.01.014.
    [27] MIKUCKI ME, FISHER DT, MATSUZAKI J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints[J]. Nat Commun, 2015, 6: 7458. DOI: 10.1038/ncomms8458.
    [28] ADACHI K, KANO Y, NAGAI T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor[J]. Nat Biotechnol, 2018, 36(4): 346-351. DOI: 10.1038/nbt.4086.
    [29] CHEN Y, YU Z, TAN X, et al. CAR-macrophage: A new immunotherapy candidate against solid tumors[J]. Biomed Pharmacother, 2021, 139: 111605. DOI: 10.1016/j.biopha.2021.111605.
    [30] WANG LC, LO A, SCHOLLER J, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity[J]. Cancer Immunol Res, 2014, 2(2): 154-166. DOI: 10.1158/2326-6066.CIR-13-0027.
    [31] EGGERT T, GRETEN TF. Tumor regulation of the tissue environment in the liver[J]. Pharmacol Ther, 2017, 173: 47-57. DOI: 10.1016/j.pharmthera.2017.02.005.
    [32] MENG X, XU Y, NING X. Tumor microenvironment acidity modulates ROR1 to promote epithelial-mesenchymal transition and hepatocarcinoma metastasis[J]. J Cell Sci, 2021, 134(7): jcs255349. DOI: 10.1242/jcs.255349.
    [33] de HENAU O, RAUSCH M, WINKLER D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells[J]. Nature, 2016, 539(7629): 443-447. DOI: 10.1038/nature20554.
    [34] HÖCHST B, SCHILDBERG FA, BÖTTCHER J, et al. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice[J]. Hepatology, 2012, 56(5): 1924-1933. DOI: 10.1002/hep.25844.
    [35] SACHDEVA M, DUCHATEAU P, DEPIL S, et al. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators[J]. J Biol Chem, 2019, 294(14): 5430-5437. DOI: 10.1074/jbc.AC119.007558.
    [36] NORELLI M, CAMISA B, BARBIERA G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells[J]. Nat Med, 2018, 24(6): 739-748. DOI: 10.1038/s41591-018-0036-4.
    [37] GUPTA S, SEETHAPATHY H, STROHBEHN IA, et al. Acute kidney injury and electrolyte abnormalities after chimeric antigen receptor T-cell (CAR-T) therapy for diffuse large B-cell lymphoma[J]. Am J Kidney Dis, 2020, 76(1): 63-71. DOI: 10.1053/j.ajkd.2019.10.011.
    [38] HARIRI G, JOFFRE J, DERYCKERE S, et al. Albumin infusion improves endothelial function in septic shock patients: a pilot study[J]. Intensive Care Med, 2018, 44(5): 669-671. DOI: 10.1007/s00134-018-5075-2.
    [39] MACKALL CL, MIKLOS DB. CNS endothelial cell activation emerges as a driver of CAR T cell-associated neurotoxicity[J]. Cancer Discov, 2017, 7(12): 1371-1373. DOI: 10.1158/2159-8290.CD-17-1084.
    [40] LEE DW, SANTOMASSO BD, LOCKE FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells[J]. Biol Blood Marrow Transplant, 2019, 25(4): 625-638. DOI: 10.1016/j.bbmt.2018.12.758.
    [41] VARADARAJAN I, LEE DW. Management of T-cell engaging immunotherapy complications[J]. Cancer J, 2019, 25(3): 223-230. DOI: 10.1097/PPO.0000000000000377.
    [42] CAO JX, WANG H, GAO WJ, et al. The incidence of cytokine release syndrome and neurotoxicity of CD19 chimeric antigen receptor-T cell therapy in the patient with acute lymphoblastic leukemia and lymphoma[J]. Cytotherapy, 2020, 22(4): 214-226. DOI: 10.1016/j.jcyt.2020.01.015.
  • 加载中
计量
  • 文章访问数:  377
  • HTML全文浏览量:  87
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-05
  • 录用日期:  2022-04-07
  • 出版日期:  2022-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回