中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胆汁酸代谢在原发性胆汁性胆管炎发病机制中的作用

贾皖婷 刘晓晓 邰文琳

引用本文:
Citation:

胆汁酸代谢在原发性胆汁性胆管炎发病机制中的作用

DOI: 10.3969/j.issn.1001-5256.2022.10.031
基金项目: 

国家自然科学基金 (82060385)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:贾皖婷负责文献查找、阅读及文章撰写; 刘晓晓对研究思路有关键贡献; 邰文琳负责文章修改。
详细信息
    通信作者:

    邰文琳,taiwenlinlin@sohu.com

Role of bile acid metabolism in the pathogenesis of primary biliary cholangitis

Research funding: 

National Natural Science Foundation of China (82060385)

More Information
  • 摘要: 原发性胆汁性胆管炎(PBC)是一种胆汁淤积性自身免疫性肝病, 以中老年女性高发, 小胆管淋巴细胞浸润和胆汁淤积为主要特征。临床表现以疲惫和胆汁淤积造成的瘙痒为主。目前被批准的治疗药物熊去氧胆酸和奥贝胆酸, 主要是通过调节胆汁酸代谢,特异且有效的改善胆汁淤积而起作用。本文介绍了胆汁酸生理及疾病状态下的病理改变,归纳了胆汁酸代谢参与疾病发病机制的可能方式,总结了目前针对胆汁酸代谢的疾病治疗方法。指出PBC胆汁酸代谢改变主要与阴离子交换器2缺陷、胆汁酸代谢的转运体和核受体先天遗传变异及后天适应性改变、肠道菌群结构发生改变有关。

     

  • [1] LLEO A, WANG GQ, GERSHWIN ME, et al. Primary biliary cholangitis[J]. Lancet, 2020, 396(10266): 1915-1926. DOI: 10.1016/S0140-6736(20)31607-X.
    [2] TRIVEDI PJ, HIRSCHFIELD GM. Recent advances in clinical practice: epidemiology of autoimmune liver diseases[J]. Gut, 2021, 70(10): 1989-2003. DOI: 10.1136/gutjnl-2020-322362.
    [3] ZENG N, DUAN W, CHEN S, et al. Epidemiology and clinical course of primary biliary cholangitis in the Asia-Pacific region: a systematic review and meta-analysis[J]. Hepatol Int, 2019, 13(6): 788-799. DOI: 10.1007/s12072-019-09984-x.
    [4] TERZIROLI BERETTA-PICCOLI B, MIELI-VERGANI G, VERGANI D, et al. The challenges of primary biliary cholangitis: What is new and what needs to be done[J]. J Autoimmun, 2019, 105: 102328. DOI: 10.1016/j.jaut.2019.102328.
    [5] GULAMHUSEIN AF, HIRSCHFIELD GM. Primary biliary cholangitis: pathogenesis and therapeutic opportunities[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2): 93-110. DOI: 10.1038/s41575-019-0226-7.
    [6] HANG S, PAIK D, YAO L, et al. Bile acid metabolites control TH17 and Treg cell differentiation[J]. Nature, 2019, 576(7785): 143-148. DOI: 10.1038/s41586-019-1785-z.
    [7] SONG X, SUN X, OH SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J]. Nature, 2020, 577(7790): 410-415. DOI: 10.1038/s41586-019-1865-0.
    [8] XIANG J, ZHANG Z, XIE H, et al. Effect of different bile acids on the intestine through enterohepatic circulation based on FXR[J]. Gut Microbes, 2021, 13(1): 1949095. DOI: 10.1080/19490976.2021.1949095.
    [9] WANG Y, LI J, MATYE D, et al. Bile acids regulate cysteine catabolism and glutathione regeneration to modulate hepatic sensitivity to oxidative injury[J]. JCI Insight, 2018, 3(8): e99676. DOI: 10.1172/jci.insight.99676.
    [10] JUNG H, CHEN J, HU X, et al. BRD4 inhibition and FXR activation, individually beneficial in cholestasis, are antagonistic in combination[J]. JCI Insight, 2020, 6(1): e141640. DOI: 10.1172/jci.insight.141640.
    [11] XIE C, TAKAHASHI S, BROCKER CN, et al. Hepatocyte peroxisome proliferator-activated receptor α regulates bile acid synthesis and transport[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(10): 1396-1411. DOI: 10.1016/j.bbalip.2019.05.014.
    [12] JONES D, BOUDES PF, SWAIN MG, et al. Seladelpar (MBX-8025), a selective PPAR-δ agonist, in patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid: a double-blind, randomised, placebo-controlled, phase 2, proof-of-concept study[J]. Lancet Gastroenterol Hepatol, 2017, 2(10): 716-726. DOI: 10.1016/S2468-1253(17)30246-7.
    [13] ENHANCE: Safety and efficacy of seladelpar in patients with primary biliary cholangitis-a phase 3, international, randomized, placebo-controlled study[J]. Gastroenterol Hepatol (N Y), 2021, 17(2 Suppl 3): 5-6.
    [14] KREMER AE, MAYO MJ, HIRSCHFIELD G, et al. Seladelpar improved measures of pruritus, sleep, and fatigue and decreased serum bile acids in patients with primary biliary cholangitis[J]. Liver Int, 2022, 42(1): 112-123. DOI: 10.1111/liv.15039.
    [15] XU BY, TANG XD, CHEN J, et al. Rifampicin induces clathrin-dependent endocytosis and ubiquitin-proteasome degradation of MRP2 via oxidative stress-activated PKC-ERK/JNK/p38 and PI3K signaling pathways in HepG2 cells[J]. Acta Pharmacol Sin, 2020, 41(1): 56-64. DOI: 10.1038/s41401-019-0266-0.
    [16] SONODA J, CHONG LW, DOWNES M, et al. Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites[J]. Proc Natl Acad Sci U S A, 2005, 102(6): 2198-2203. DOI: 10.1073/pnas.0409481102.
    [17] KHURANA S, SINGH P. Rifampin is safe for treatment of pruritus due to chronic cholestasis: a meta-analysis of prospective randomized-controlled trials[J]. Liver Int, 2006, 26(8): 943-948. DOI: 10.1111/j.1478-3231.2006.01326.x.
    [18] SULTANA H, KOMAI M, SHIRAKAWA H. The role of vitamin K in cholestatic liver disease[J]. Nutrients, 2021, 13(8): 2515. DOI: 10.3390/nu13082515.
    [19] ZHANG Z, CHEN F, LI J, et al. 1, 25(OH)2D3 suppresses proinflammatory responses by inhibiting Th1 cell differentiation and cytokine production through the JAK/STAT pathway[J]. Am J Transl Res, 2018, 10(8): 2737-2746.
    [20] FANG F, WANG J, PAN J, et al. Relationship between vitamin D (1, 25-dihydroxyvitamin D3) receptor gene polymorphisms and primary biliary cirrhosis risk: a meta-analysis[J]. Genet Mol Res, 2015, 14(1): 981-988. DOI: 10.4238/2015.February.6.1.
    [21] KEMPINSKA-PODHORODECKA A, MILKIEWICZ M, WASIK U, et al. Decreased expression of vitamin D receptor affects an immune response in primary biliary cholangitis via the VDR-miRNA155-SOCS1 pathway[J]. Int J Mol Sci, 2017, 18(2): 289. DOI: 10.3390/ijms18020289.
    [22] GONZALEZ-SANCHEZ E, EL MOURABIT H, JAGER M, et al. Cholangiopathy aggravation is caused by VDR ablation and alleviated by VDR-independent vitamin D signaling in ABCB4 knockout mice[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(4): 166067. DOI: 10.1016/j.bbadis.2020.166067.
    [23] VASSILEVA G, GOLOVKO A, MARKOWITZ L, et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation[J]. Biochem J, 2006, 398(3): 423-430. DOI: 10.1042/BJ20060537.
    [24] FIORUCCI S, DISTRUTTI E, CARINO A, et al. Bile acids and their receptors in metabolic disorders[J]. Prog Lipid Res, 2021, 82: 101094. DOI: 10.1016/j.plipres.2021.101094.
    [25] SANG C, WANG X, ZHOU K, et al. Bile acid profiles are distinct among patients with different etiologies of chronic liver disease[J]. J Proteome Res, 2021, 20(5): 2340-2351. DOI: 10.1021/acs.jproteome.0c00852.
    [26] CHEN W, WEI Y, XIONG A, et al. Comprehensive analysis of serum and fecal bile acid profiles and interaction with gut microbiota in primary biliary cholangitis[J]. Clin Rev Allergy Immunol, 2020, 58(1): 25-38. DOI: 10.1007/s12016-019-08731-2.
    [27] PRIETO J, QIAN C, GARCÍA N, et al. Abnormal expression of anion exchanger genes in primary biliary cirrhosis[J]. Gastroenterology, 1993, 105(2): 572-578. DOI: 10.1016/0016-5085(93)90735-u.
    [28] MEDINA JF, MARTÍNEZ-ANSÓ, VAZQUEZ JJ, et al. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis[J]. Hepatology, 1997, 25(1): 12-17. DOI: 10.1002/hep.510250104.
    [29] BANALES JM, SÁEZ E, URIZ M, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis[J]. Hepatology, 2012, 56(2): 687-697. DOI: 10.1002/hep.25691.
    [30] RODRIGUES PM, PERUGORRIA MJ, SANTOS-LASO A, et al. Primary biliary cholangitis: A tale of epigenetically-induced secretory failure?[J]. J Hepatol, 2018, 69(6): 1371-1383. DOI: 10.1016/j.jhep.2018.08.020.
    [31] HISAMOTO S, SHIMODA S, HARADA K, et al. Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis[J]. J Autoimmun, 2016, 75: 150-160. DOI: 10.1016/j.jaut.2016.08.006.
    [32] KOJIMA H, NIES AT, KÖNIG J, et al. Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis[J]. J Hepatol, 2003, 39(5): 693-702. DOI: 10.1016/s0168-8278(03)00410-0.
    [33] INAMINE T, HIGA S, NOGUCHI F, et al. Association of genes involved in bile acid synthesis with the progression of primary biliary cirrhosis in Japanese patients[J]. J Gastroenterol, 2013, 48(10): 1160-1170. DOI: 10.1007/s00535-012-0730-9.
    [34] PHAM DH, KUDIRA R, XU L, et al. Deleterious variants in ABCC12 are detected in idiopathic chronic cholestasis and cause intrahepatic bile duct loss in model organisms[J]. Gastroenterology, 2021, 161(1): 287-300. e16. DOI: 10.1053/j.gastro.2021.03.026.
    [35] AFONSO MB, RODRIGUES PM, SIMÃO AL, et al. miRNA-21 ablation protects against liver injury and necroptosis in cholestasis[J]. Cell Death Differ, 2018, 25(5): 857-872. DOI: 10.1038/s41418-017-0019-x.
    [36] JUANOLA O, HASSAN M, KUMAR P, et al. Intestinal microbiota drives cholestasis-induced specific hepatic gene expression patterns[J]. Gut Microbes, 2021, 13(1): 1-20. DOI: 10.1080/19490976.2021.1911534.
    [37] WANG D, DOESTZADA M, CHEN L, et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism[J]. Cell Host Microbe, 2021, 29(12): 1802-1814. e5. DOI: 10.1016/j.chom.2021.11.003.
    [38] LI Y, TANG R, LEUNG P, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases[J]. Autoimmun Rev, 2017, 16(9): 885-896. DOI: 10.1016/j.autrev.2017.07.002.
    [39] HARUTA I, HASHIMOTO E, KATO Y, et al. Lipoteichoic acid may affect the pathogenesis of bile duct damage in primary biliary cirrhosis[J]. Autoimmunity, 2006, 39(2): 129-135. DOI: 10.1080/08916930600623841.
    [40] TANG R, WEI Y, LI Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy[J]. Gut, 2018, 67(3): 534-541. DOI: 10.1136/gutjnl-2016-313332.
    [41] LI B, ZHANG J, CHEN Y, et al. Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary cholangitis[J]. Gut Microbes, 2021, 13(1): 1946366. DOI: 10.1080/19490976.2021.1946366.
    [42] HARMS MH, VAN BUUREN HR, CORPECHOT C, et al. Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis[J]. J Hepatol, 2019, 71(2): 357-365. DOI: 10.1016/j.jhep.2019.04.001.
    [43] XIA ZY, HAN T, MENG HJ. Clinical efficacy of early stage immunosuppression combined with ursodeoxycholic acid in the treatment of primary biliary cirrhosis[J]. Clin J Med Offic, 2020, 48(1): 97-98, 101. DOI: 10.16680/j.1671-3826.2020.01.33.

    夏志勇, 韩涛, 孟红军. 早期免疫抑制联合熊去氧胆酸治疗原发性胆汁性肝硬化临床疗效[J]. 临床军医杂志, 2020, 48(1): 97-98, 101. DOI: 10.16680/j.1671-3826.2020.01.33.
    [44] KULKARNI AV, TEVETHIA HV, ARAB JP, et al. Efficacy and safety of obeticholic acid in liver disease-A systematic review and meta-analysis[J]. Clin Res Hepatol Gastroenterol, 2021, 45(3): 101675. DOI: 10.1016/j.clinre.2021.101675.
    [45] KJÆRGAARD K, FRISCH K, SØRENSEN M, et al. Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis[J]. J Hepatol, 2021, 74(1): 58-65. DOI: 10.1016/j.jhep.2020.07.028.
    [46] GOMEZ E, GARCIA BUEY L, MOLINA E, et al. Effectiveness and safety of obeticholic acid in a Southern European multicentre cohort of patients with primary biliary cholangitis and suboptimal response to ursodeoxycholic acid[J]. Aliment Pharmacol Ther, 2021, 53(4): 519-530. DOI: 10.1111/apt.16181.
    [47] VERBEKE L, NEVENS F, LALEMAN W. Steroidal or non-steroidal FXR agonists - Is that the question?[J]. J Hepatol, 2017, 66(4): 680-681. DOI: 10.1016/j.jhep.2017.01.013.
    [48] JOHN BV, SCHWARTZ K, LEVY C, et al. Impact of obeticholic acid exposure on decompensation and mortality in primary biliary cholangitis and cirrhosis[J]. Hepatol Commun, 2021, 5(8): 1426-1436. DOI: 10.1002/hep4.1720.
    [49] CHEN J, GU J, SHAH B, et al. Pharmacokinetics of tropifexor, a potent farnesoid X receptor agonist, in participants with varying degrees of hepatic impairment[J]. J Clin Pharmacol, 2022, 62(4): 520-531. DOI: 10.1002/jcph.1996.
    [50] FENG BL, YU HH, SHEN W. Ursodeoxycholic acid combined with bezafibrate in the treatment of refractory primary biliary cholangitis: a meta-analysis[J]. Chin J Hepatol, 2019, 27(4): 304-311. DOI: 10.3760/cma.j.issn.1007-3418.2019.04.012.

    奉白蕾, 俞慧宏, 沈薇. 熊去氧胆酸联合苯扎贝特治疗难治性原发性胆汁性胆管炎的Meta分析[J]. 中华肝脏病杂志, 2019, 27(4): 304-311. DOI: 10.3760/cma.j.issn.1007-3418.2019.04.012.
    [51] SCHATTENBERG JM, PARES A, KOWDLEY KV, et al. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA[J]. J Hepatol, 2021, 74(6): 1344-1354. DOI: 10.1016/j.jhep.2021.01.013.
    [52] KIM KY, MANCANO MA. Fenofibrate potentiates warfarin effects[J]. Ann Pharmacother, 2003, 37(2): 212-215. DOI: 10.1177/106002800303700210.
    [53] FILIPPATOS TD, ELISAF MS. Safety considerations with fenofibrate/simvastatin combination[J]. Expert Opin Drug Saf, 2015, 14(9): 1481-1493. DOI: 10.1517/14740338.2015.1056778.
    [54] GHONEM NS, ASSIS DN, BOYER JL. Fibrates and cholestasis[J]. Hepatology, 2015, 62(2): 635-643. DOI: 10.1002/hep.27744.
  • 加载中
计量
  • 文章访问数:  431
  • HTML全文浏览量:  115
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 录用日期:  2022-04-15
  • 出版日期:  2022-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回