中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基因编辑猪用于急性肝衰竭治疗的路径探讨

淮国丽 杜嘉祥 潘登科

引用本文:
Citation:

基因编辑猪用于急性肝衰竭治疗的路径探讨

DOI: 10.3969/j.issn.1001-5256.2022.10.004
基金项目: 

四川省科技计划项目(重点研发项目) (2021YFS0008)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:淮国丽负责献收集,撰写论及修改;杜嘉祥参与基因编辑部分内容的指导和修改;潘登科提供章思路,指导撰写及修改。
详细信息
    通信作者:

    潘登科,pandengke2002@163.com

The discussion on the Genetically Modified Pigs for the treatment of acute liver failure

Research funding: 

Sichuan Science and Technology Program (Key R & D Project) (2021YFS0008)

More Information
  • 摘要: 目前,我国肝移植需求巨大,然而却面临供体器官极度短缺的限制。异种(猪)肝移植是有望成为缓解供体紧缺的一个潜在途径。肝脏是具有合成功能的解毒器官,当使用基因编辑猪作为供体时,面临着需要克服免疫排斥和解决生理功能不匹配的双重问题。因此,从抑制固有免疫反应出发可以更好地减轻异种肝移植的免疫排斥。此外,利用人源化细胞肝脏的嵌合体可能解决生理功能不匹配的问题。随着基因编辑技术的发展,获得多基因编辑猪和嵌合体已成为可能。因此,从上述两方面着手探索和研究,有望解决异种肝移植目前存在的问题,从而推动异种肝移植领域进一步发展。

     

  • [1] LI X, WANG Y, YANG H, et al. Liver and hepatocyte transplantation: what can pigs contribute?[J]. Front Immunol, 2021, 12: 802692. DOI: 10.3389/fimmu.2021.802692.
    [2] QIU J, ZHAO CH. Research progress of liver xenotransplantation[J]. J Hepatobiliary Surg, 2022, 30(2): 154-156. DOI: 10.3969/j.issn.1006-4761.2022.02.019.

    邱健, 赵红川. 异种肝移植研究进展[J]. 肝胆外科杂志, 2022, 30(2): 154-156. DOI: 10.3969/j.issn.1006-4761.2022.02.019.
    [3] CALNE RY, WHITE HJ, HERBERTSON BM, et al. Pig-to-baboon liver xenografts[J]. Lancet, 1968, 1(7553): 1176-1178. DOI: 10.1016/s0140-6736(68)91869-2.
    [4] KIM K, SCHUETZ C, ELIAS N, et al. Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons[J]. Xenotransplantation, 2012, 19(4): 256-264. DOI: 10.1111/j.1399-3089.2012.00717.x.
    [5] LAMM V, EKSER B, VAGEFI PA, et al. Bridging to allotransplantation-is pig liver xenotransplantation the best option?[J]. Transplantation, 2022, 106(1): 26-36. DOI: 10.1097/TP.0000000000003722.
    [6] CALNE RY, DAVIS DR, PENA JR, et al. Hepatic allografts and xenografts in primates[J]. Lancet, 1970, 1(7638): 103-106. DOI: 10.1016/s0140-6736(70)90462-9.
    [7] POWELSON J, COSIMI AB, AUSTEN W Jr, et al. Porcine-to-primate orthotopic liver transplantation[J]. Transplant Proc, 1994, 26(3): 1353-1354.
    [8] LUO Y, KOSANKE S, MIELES L, et al. Comparative histopathology of hepatic allografts and xenografts in the nonhuman primate[J]. Xenotransplantation, 1998, 5(3): 197-206. DOI: 10.1111/j.1399-3089.1998.tb00028.x.
    [9] RAMIREZ P, CHAVEZ R, MAJADO M, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days[J]. Transplantation, 2000, 70(7): 989-998. DOI: 10.1097/00007890-200010150-00001.
    [10] RAMÍREZ P, MONTOYA MJ, RÍOS A, et al. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase)[J]. Transplant Proc, 2005, 37(9): 4103-4106. DOI: 10.1016/j.transproceed.2005.09.186.
    [11] EKSER B, LONG C, ECHEVERRI GJ, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance[J]. Am J Transplant, 2010, 10(2): 273-285. DOI: 10.1111/j.1600-6143.2009.02945.x.
    [12] BUTLER JR, PARIS LL, BLANKENSHIP RL, et al. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers[J]. Transplantation, 2016, 100(3): 571-576. DOI: 10.1097/TP.0000000000001071.
    [13] CIMENO A, FRENCH BM, POWELL JM, et al. Synthetic liver function is detectable in transgenic porcine livers perfused with human blood[J]. Xenotransplantation, 2018, 25(1): e12361. DOI: 10.1111/xen.12361.
    [14] SYKES M, SACHS DH. Transplanting organs from pigs to humans[J]. Sci Immunol, 2019, 4(41): eaau6298. DOI: 10.1126/sciimmunol.aau6298.
    [15] LI P, WALSH JR, LOPEZ K, et al. Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses[J]. Sci Rep, 2021, 11(1): 13131. DOI: 10.1038/s41598-021-92543-y.
    [16] MAEDA A, KOGATA S, TOYAMA C, et al. The Innate Cellular Immune Response in Xenotransplantation[J]. Front Immunol, 2022, 13: 858604. DOI: 10.3389/fimmu.2022.858604.
    [17] BARCLAY AN, BROWN MH. The SIRP family of receptors and immune regulation[J]. Nat Rev Immunol, 2006, 6(6): 457-464. DOI: 10.1038/nri1859.
    [18] ZENG GM, JIANG YD, FENG C, et al. Generation and Expression Analysis of Human (Homo sapiens) CD47 Transgenic Bama Miniature Pig (Sus scrofa)[J]. J Agricult Biotech, 2016, 24(8): 1251-1258. DOI: 10.3969/j.issn.1674-7968.2016.08.017.

    曾国敏, 蒋应弟, 冯冲, 等. 表达人CD47基因的巴马小型猪创建及其表达分析[J]. 农业生物技术学报, 2016, 24(8): 1251-1258. DOI: 10.3969/j.issn.1674-7968.2016.08.017.
    [19] ZHANG Z, LI X, ZHANG H, et al. Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation[J]. Xenotransplantation, 2017, 24(5): e12321. DOI: 10.1111/xen.12321.
    [20] PARIS LL, CHIHARA RK, REYES LM, et al. ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro[J]. Xenotransplantation, 2011, 18(4): 245-251. DOI: 10.1111/j.1399-3089.2011.00639.x.
    [21] PARIS LL, ESTRADA JL, LI P, et al. Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein[J]. Xenotransplantation, 2015, 22(3): 203-210. DOI: 10.1111/xen.12164.
    [22] LI XR, FENG C, LONG C, et al. Generation of Asialoglycoprotein Receptor 1 (ASGR1) Gene Knockout Pigs (Sus scrofa) via CRISPR/Cas9[J]. J Agricult Biotech, 2016, 24(8): 1243-1250. DOI: 10.3969/j.issn.1674-7968.2016.08.016.

    李西睿, 冯冲, 龙川, 等. CRISPR/Cas9介导的ASGR1基因敲除猪制备[J]. 农业生物技术学报, 2016, 24(8): 1243-1250. DOI: 10.3969/j.issn.1674-7968.2016.08.016.
    [23] AHRENS HE, PETERSEN B, HERRMANN D, et al. siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation[J]. Am J Transplant, 2015, 15(5): 1407-1414. DOI: 10.1111/ajt.13120.
    [24] CROSS-NAJAFI AA, LOPEZ K, ISIDAN A, et al. Current barriers to clinical liver xenotransplantation[J]. Front Immunol, 2022, 13: 827535. DOI: 10.3389/fimmu.2022.827535.
    [25] PENG Q, YEH H, WEI L, et al. Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells[J]. PLoS One, 2012, 7(10): e47273. DOI: 10.1371/journal.pone.0047273.
    [26] PETERSEN B, RAMACKERS W, TIEDE A, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C[J]. Xenotransplantation, 2009, 16(6): 486-495. DOI: 10.1111/j.1399-3089.2009.00537.x.
    [27] KWON DJ, KIM DH, HWANG IS, et al. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes[J]. Transgenic Res, 2017, 26(1): 153-163. DOI: 10.1007/s11248-016-9979-8.
    [28] PAN D, LIU T, LEI T, et al. Progress in multiple genetically modified minipigs for xenotransplantation in China[J]. Xenotransplantation, 2019, 26(1): e12492. DOI: 10.1111/xen.12492.
    [29] CARVALHO-OLIVEIRA M, VALDIVIA E, BLASCZYK R, et al. Immunogenetics of xenotransplantation[J]. Int J Immunogenet, 2021, 48(2): 120-134. DOI: 10.1111/iji.12526.
    [30] SHAH JA, PATEL MS, ELIAS N, et al. Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and costimulation blockade[J]. Am J Transplant, 2017, 17(8): 2178-2185. DOI: 10.1111/ajt.14341.
    [31] COOPER D, PIERSON RN 3rd, HERING BJ, et al. Regulation of clinical xenotransplantation-time for a reappraisal[J]. Transplantation, 2017, 101(8): 1766-1769. DOI: 10.1097/TP.0000000000001683.
    [32] KOBAYASHI T, YAMAGUCHI T, HAMANAKA S, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells[J]. Cell, 2010, 142(5): 787-799. DOI: 10.1016/j.cell.2010.07.039.
    [33] YAMAGUCHI T, SATO H, KATO-ITOH M, et al. Interspecies organogenesis generates autologous functional islets[J]. Nature, 2017, 542(7640): 191-196. DOI: 10.1038/nature21070.
    [34] WU J, PLATERO-LUENGO A, SAKURAI M, et al. Interspecies chimerism with mammalian pluripotent stem cells[J]. Cell, 2017, 168(3): 473-486. e15. DOI: 10.1016/j.cell.2016.12.036.
    [35] FU R, YU D, REN J, et al. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs[J]. Protein Cell, 2020, 11(2): 97-107. DOI: 10.1007/s13238-019-00676-8.
    [36] LOVELL-BADGE R, ANTHONY E, BARKER RA, et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update[J]. Stem Cell Reports, 2021, 16(6): 1398-1408. DOI: 10.1016/j.stemcr.2021.05.012.
    [37] TAN T, WU J, SI C, et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo[J]. Cell, 2021, 184(13): 3589. DOI: 10.1016/j.cell.2021.06.011.
    [38] HUANG J, GUO X, FAN N, et al. RAG1/2 knockout pigs with severe combined immunodeficiency[J]. J Immunol, 2014, 193(3): 1496-1503. DOI: 10.4049/jimmunol.1400915.
    [39] SUZUKI S, IWAMOTO M, SAITO Y, et al. Il2rg gene-targeted severe combined immunodeficiency pigs[J]. Cell Stem Cell, 2012, 10(6): 753-758. DOI: 10.1016/j.stem.2012.04.021.
    [40] GAO M, ZHANG B, HE Y, et al. Efficient generation of an Fah/Rag2 dual-gene knockout porcine cell line using CRISPR/Cas9 and adenovirus[J]. DNA Cell Biol, 2019, 38(4): 314-321. DOI: 10.1089/dna.2018.4493.
    [41] WANG SS, ZHU HW, LU CS, et al. Generation and breeding of FAH gene knockout cloned minipigs[J]. Chin J Comp Med, 2019, 29(5): 29-37. DOI: 10.3969/j.issn.1671-7856.2019.05.005.

    王莎莎, 朱辉斌, 卢晟盛, 等. FAH基因敲除克隆小型猪的制备及繁育[J]. 中国比较医学杂志, 2019, 29(5): 29-37. DOI: 10.3969/j.issn.1671-7856.2019.05.005.
  • 加载中
计量
  • 文章访问数:  364
  • HTML全文浏览量:  84
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 录用日期:  2020-08-31
  • 出版日期:  2022-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回