中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异种肝移植中的急性体液性排斥反应

章忠强 梁硕洲 司中洲 齐海智

引用本文:
Citation:

异种肝移植中的急性体液性排斥反应

DOI: 10.3969/j.issn.1001-5256.2022.10.003
基金项目: 

湖南省重点研发项目 (2021DK2002)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:章忠强、梁硕洲负责撰写论文;司中洲、齐海智负责写作思路,指导撰写、修改文章并最后定稿。
详细信息
    通信作者:

    司中洲,zhongzsi@csu.edu.cn

Acute humoral rejection in liver xenotransplantation

Research funding: 

Hunan Provincial Key Research Project (2021DK2002)

More Information
  • 摘要: 肝移植是各种终末期肝病最为有效的治疗手段。肝脏供体的严重短缺导致大量终末期肝病患者死亡。利用基因工程技术研发的基因工程猪作为供体,是目前最有可能解决肝脏供体短缺的办法之一。虽然,目前基因工程猪-非人灵长类动物异种肝移植术后发生的急性排斥反应、血小板减少症、凝血异常等问题阻碍了异种肝脏的临床应用,但基因工程技术的发展以及新型免疫抑制剂的应用,异种肝移植急性排斥反应在一定程度上得到了控制。目前,急性体液性排斥反应可能是导致较长时间存活的移植物失功的主要因素。因此,明确异种肝移植中的急性体液性排斥反应的机制及处理方法,对于目前我国今后开展异种肝移植研究具有重要的意义。

     

  • 图  1  异种肝移植术后发生超急性排斥反应(野生型猪肝供体移植到恒河猴)

    Figure  1.  Acute rejection in liver xenotransplantation (WT pig to rhesus)

    表  1  基因工程猪-非人灵长类动物异种肝移植受体存活时间

    Table  1.   Survival time of genetically engineered pig - nonhuman primate xenotransplantation recipients

    年份 国家 研究者 移植类型 移植数量(只) 最长存活时间(d)
    2000 西班牙 Ramirez等[10] 原位 2 8
    2010 美国 Esker等[11] 原位 10 7
    2012 美国 Kim等[12] 原位 3 9
    2013 中国 Dou等[13] 异位(辅助) 1 14
    2014 美国 Yeh等[14] 异位(辅助) 1 15
    2016 美国 Navarro-Alvarez等[15] 原位 6 7
    2016 美国 Shah等[16] 原位 1 25
    2017 美国 Shah等[17] 原位 4 29
    2021 中国 Dou等[18] 异位(辅助) 1 26
    下载: 导出CSV
  • [1] BALJER BC, KOLHE S, CHAN CD, et al. Advances in image enhancement for sarcoma surgery[J]. Cancer Lett, 2020, 483: 1-11. DOI: 10.1016/j.canlet.2020.03.029.
    [2] MEIRELLES JÚNIOR RF, SALVALAGGIO P, REZENDE MB, et al. Liver transplantation: history, outcomes and perspectives[J]. Einstein (Sao Paulo), 2015, 13(1): 149-152. DOI: 10.1590/S1679-45082015RW3164.
    [3] COOPER D, WIJKSTROM M, HARIHARAN S, et al. Selection of patients for initial clinical trials of solid organ xenotransplantation[J]. Transplantation, 2017, 101(7): 1551-1558. DOI: 10.1097/TP.0000000000001582.
    [4] ZHANG X, LI X, YANG Z, et al. A review of pig liver xenotransplantation: Current problems and recent progress[J]. Xenotransplantation, 2019, 26(3): e12497. DOI: 10.1111/xen.12497.
    [5] van der Heyde MN. Liver transplantation[J]. Ned Tijdschr Geneeskd, 1968, 112(41): 1823-1827.
    [6] WOLF P, MEYER C, BOUDJEMA K, et al. The pig as a model in liver xenotransplantation[J]. Vet Res, 1997, 28(3): 217-222.
    [7] EKSER B, GRIDELLI B, TECTOR AJ, et al. Pig liver xenotransplantation as a bridge to allotransplantation: which patients might benefit?[J]. Transplantation, 2009, 88(9): 1041-1049. DOI: 10.1097/TP.0b013e3181ba0555.
    [8] PATEL MS, LOURAS N, VAGEFI PA. Liver xenotransplantation[J]. Curr Opin Organ Transplant, 2017, 22(6): 535-540. DOI: 10.1097/MOT.0000000000000459.
    [9] CIMENO A, BARTH RN, LAMATTINA JC. Advances in liver xenotransplantation[J]. Curr Opin Organ Transplant, 2018, 23(6): 615-620. DOI: 10.1097/MOT.0000000000000578.
    [10] RAMIREZ P, CHAVEZ R, MAJADO M, et al. The porcine liver supports metabolic homeostasis in the nonhuman primate: experimental study in a model of orthotopic liver transplantation from h-DAF transgenic pig to baboon[J]. Transplant Proc, 2000, 32(5): 1112-1113. DOI: 10.1016/s0041-1345(00)01150-7.
    [11] EKSER B, LONG C, ECHEVERRI GJ, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance[J]. Am J Transplant, 2010, 10(2): 273-285. DOI: 10.1111/j.1600-6143.2009.02945.x.
    [12] KIM K, SCHUETZ C, ELIAS N, et al. Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons[J]. Xenotransplantation, 2012, 19(4): 256-264. DOI: 10.1111/j.1399-3089.2012.00717.x.
    [13] DOU K, WANG D, TAO K, et al. A modified heterotopic auxiliary living donor liver transplantation: report of a case[J]. Ann Hepatol, 2014, 13(3): 399-403. DOI: 10.1016/S1665-2681(19)30872-5
    [14] YEH H, MACHAIDZE Z, WAMALA I, et al. Increased transfusion-free survival following auxiliary pig liver xenotransplantation[J]. Xenotransplantation, 2014, 21(5): 454-464. DOI: 10.1111/xen.12111.
    [15] NAVARRO-ALVAREZ N, SHAH JA, ZHU A, et al. The effects of exogenous administration of human coagulation factors following pig-to-baboon liver xenotransplantation[J]. Am J Transplant, 2016, 16(6): 1715-1725. DOI: 10.1111/ajt.13647.
    [16] SHAH JA, NAVARRO-ALVAREZ N, DEFAZIO M, et al. A bridge to somewhere: 25-day survival after pig-to-baboon liver xenotransplantation[J]. Ann Surg, 2016, 263(6): 1069-1071. DOI: 10.1097/SLA.0000000000001659.
    [17] SHAH JA, PATEL MS, ELIAS N, et al. Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and costimulation blockade[J]. Am J Transplant, 2017, 17(8): 2178-2185. DOI: 10.1111/ajt.14341.
    [18] LI X, WANG Y, YANG H, et al. Liver and hepatocyte transplantation: what can pigs contribute?[J]. Front Immunol, 2021, 12: 802692. DOI: 10.3389/fimmu.2021.802692.
    [19] YANG YG, SYKES M. Xenotransplantation: current status and a perspective on the future[J]. Nat Rev Immunol, 2007, 7(7): 519-531. DOI: 10.1038/nri2099.
    [20] ZHOU Q, LI T, WANG K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection[J]. Front Immunol, 2022, 13: 928173. DOI: 10.3389/fimmu.2022.928173.
    [21] EKSER B, KLEIN E, HE J, et al. Genetically-engineered pig-to-baboon liver xenotransplantation: histopathology of xenografts and native organs[J]. PLoS One, 2012, 7(1): e29720. DOI: 10.1371/journal.pone.0029720.
    [22] COOPER D, EKSER B, TECTOR AJ. Immunobiological barriers to xenotransplantation[J]. Int J Surg, 2015, 23(Pt B): 211-216. DOI: 10.1016/j.ijsu.2015.06.068.
    [23] CHEN G, QIAN H, STARZL T, et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys[J]. Nat Med, 2005, 11(12): 1295-1298. DOI: 10.1038/nm1330.
    [24] ZHU A, HURST R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum[J]. Xenotransplantation, 2002, 9(6): 376-381. DOI: 10.1034/j.1399-3089.2002.02138.x.
    [25] COOPER DK. Modifying the sugar icing on the transplantation cake[J]. Glycobiology, 2016, 26(6): 571-581. DOI: 10.1093/glycob/cww028.
    [26] WANG RG, RUAN M, ZHANG RJ, et al. Antigenicity of tissues and organs from GGTA1/CMAH/β4GalNT2 triple gene knockout pigs[J]. J Biomed Res, 2018. DOI: 10.7555/JBR.32.20180018.[Online ahead of print]
    [27] Humoral reactivity of renal transplant-waitlisted patients to cells from ggta1/cmah/b4galnt2, and sla class i knockout pigs: erratum[J]. Transplantation, 2018, 102(2): e88. DOI: 10.1097/TP.0000000000002066.
    [28] LADOWSKI JM, HARA H, COOPER D. The role of slas in xenotransplantation[J]. Transplantation, 2021, 105(2): 300-307. DOI: 10.1097/TP.0000000000003303.
    [29] EKSER B, BURLAK C, WALDMAN JP, et al. Immunobiology of liver xenotransplantation[J]. Expert Rev Clin Immunol, 2012, 8(7): 621-634. DOI: 10.1586/eci.12.56.
    [30] CANDINAS D, BELLIVEAU S, KOYAMADA N, et al. T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection[J]. Transplantation, 1996, 62(12): 1920-1927. DOI: 10.1097/00007890-199612270-00042.
    [31] FOX A, MOUNTFORD J, BRAAKHUIS A, et al. Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection[J]. J Immunol, 2001, 166(3): 2133-2140. DOI: 10.4049/jimmunol.166.3.2133.
    [32] HAUZENBERGER E, KLOMINEK J, HOLGERSSON J. Anti-Gal IgG potentiates natural killer cell migration across porcine endothelium via endothelial cell activation and increased natural killer cell motility triggered by CD16 cross-linking[J]. Eur J Immunol, 2004, 34(4): 1154-1163. DOI: 10.1002/eji.200324568.
    [33] LI S, YAN Y, LIN Y, et al. Rapidly induced, T-cell independent xenoantibody production is mediated by marginal zone B cells and requires help from NK cells[J]. Blood, 2007, 110(12): 3926-3935. DOI: 10.1182/blood-2007-01-065482.
    [34] EZZELARAB M, GARCIA B, AZIMZADEH A, et al. The innate immune response and activation of coagulation in alpha1,3-galactosyltransferase gene-knockout xenograft recipients[J]. Transplantation, 2009, 87(6): 805-812. DOI: 10.1097/TP.0b013e318199c34f.
    [35] AL-MOHANNA FA, COLLISON KS, ALLEN SP, et al. Naive neutrophils and xenotransplantation[J]. Lancet, 1996, 348(9036): 1246. DOI: 10.1016/S0140-6736(05)65524-9.
    [36] ZHANG X, WANG Q, ZHAO J, et al. The resurgent landscape of xenotransplantation of pig organs in nonhuman primates[J]. Sci China Life Sci, 2021, 64(5): 697-708. DOI: 10.1007/s11427-019-1806-2.
    [37] RAMIREZ P, MONTOYA MJ, RIOS A, et al. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase)[J]. Transplant Proc, 2005, 37(9): 4103-4106. DOI: 10.1016/j.transproceed.2005.09.186.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  272
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 录用日期:  2020-08-31
  • 出版日期:  2022-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回