中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

糖酵解与线粒体功能障碍的关系及其在肝脏疾病中的潜在价值

颜耿杰 林镛 苏会吉 陈含笑 班少群 韦艾凌 毛德文 龙富立

引用本文:
Citation:

糖酵解与线粒体功能障碍的关系及其在肝脏疾病中的潜在价值

DOI: 10.3969/j.issn.1001-5256.2022.08.042
基金项目: 

国家自然科学基金 (81960841);

国家科技重大专项 (2018ZX10725505-001-011);

广西科技计划项目 (2020GXNSFAA297098);

广西中医药大学校级硕士研究生创新项目 (YCXJ2021034)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:颜耿杰负责课题设计,资料分析,撰写论文;林镛、苏会吉、陈含笑、班少群参与收集数据,修改论文;毛德文、韦艾凌、龙富立负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    龙富立,longfuli005@163.com

Association between glycolysis and mitochondrial dysfunction and its potential value in liver diseases

Research funding: 

National Natural Science Foundation of China (81960841);

National Science and Technology Major Project (2018ZX10725505-001-011);

Guangxi Science and Technology Project (2020GXNSFAA297098);

Guangxi University of Traditional Chinese Medicine Graduate Innovation Project (YCXJ2021034)

More Information
  • 摘要: 糖酵解在肝脏疾病的发生发展中发挥着重要作用。在不同肝脏疾病中,糖酵解活性显示出不同程度的增强,并与线粒体功能障碍(氧化磷酸化功能缺陷和活性氧产生)密切相关,这有助于填补由氧化磷酸化受损而导致的能量产生缺陷。因此,或可通过靶向调节有氧糖酵解中的关键因素,例如抑制酶己糖激酶2、M2型丙酮酸激酶或其他调节途径,寻求肝脏疾病的潜在治疗新方法。本文从糖酵解与肝脏疾病的相互关系出发,阐述糖酵解在肝脏疾病中的治疗意义和潜在价值,以期为肝脏疾病治疗提供新思路。

     

  • 图  1  有氧糖酵解的过程及其3种限速酶

    注:HK2、PFK1和PKM2是糖酵解过程中的3种限速酶。HK2可催化葡萄糖生成6-磷酸葡萄糖,并与线粒体外膜上的VDAC1相互作用和结合,从而促进ATP的产生和抑制细胞凋亡。PFK1可催化F-6-P为FDP,其活性受PFKFB3催化产物F-2, 6-BP的调节。PKM2不仅能够催化PEP合成丙酮酸,还能够移位至细胞核内,与一些转录因子如HIF-1α、β-catenin/c-Myc、NF-κB和STAT3共同激活,促进相关靶基因的转录。

    Figure  1.  The process of glycolysis and its three rate limiting enzymes

  • [1] AUGER C, ALHASAWI A, CONTAVADOO M, et al. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders[J]. Front Cell Dev Biol, 2015, 3: 40. DOI: 10.3389/fcell.2015.00040.
    [2] WALLACE DC, FAN W, PROCACCIO V. Mitochondrial energetics and therapeutics[J]. Annu Rev Pathol, 2010, 5: 297-348. DOI: 10.1146/annurev.pathol.4.110807.092314.
    [3] NISHIKAWA T, BELLANCE N, DAMM A, et al. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease[J]. J Hepatol, 2014, 60(6): 1203-1211. DOI: 10.1016/j.jhep.2014.02.014.
    [4] GO Y, JEONG JY, JEOUNG NH, et al. Inhibition of pyruvate dehydrogenase kinase 2 protects against hepatic steatosis through modulation of tricarboxylic acid cycle anaplerosis and ketogenesis[J]. Diabetes, 2016, 65(10): 2876-2887. DOI: 10.2337/db16-0223.
    [5] ZHANG M, ZHAO Y, LI Z, et al. Pyruvate dehydrogenase kinase 4 mediates lipogenesis and contributes to the pathogenesis of nonalcoholic steatohepatitis[J]. Biochem Biophys Res Commun, 2018, 495(1): 582-586. DOI: 10.1016/j.bbrc.2017.11.054.
    [6] SHIRAI T, NAZAREWICZ RR, WALLIS BB, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease[J]. J Exp Med, 2016, 213(3): 337-354. DOI: 10.1084/jem.20150900.
    [7] MIDDLETON P, VERGIS N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation[J]. Therap Adv Gastroenterol, 2021, 14: 17562848211031394. DOI: 10.1177/17562848211031394.
    [8] GABBIA D, CANNELLA L, DE MARTIN S. The role of oxidative stress in NAFLD-NASH-HCC transition-focus on NADPH oxidases[J]. Biomedicines, 2021, 9(6): 687. DOI: 10.3390/biomedicines9060687.
    [9] LEE N, CARELLA MA, PAPA S, et al. High expression of glycolytic genes in cirrhosis correlates with the risk of developing liver cancer[J]. Front Cell Dev Biol, 2018, 6: 138. DOI: 10.3389/fcell.2018.00138.
    [10] LI S, LI J, DAI W, et al. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death[J]. Br J Cancer, 2017, 117(10): 1518-1528. DOI: 10.1038/bjc.2017.323.
    [11] YE JH, CHAO J, CHANG ML, et al. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation[J]. Sci Rep, 2016, 6: 33102. DOI: 10.1038/srep33102.
    [12] SHANG RZ, QU SB, WANG DS. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects[J]. World J Gastroenterol, 2016, 22(45): 9933-9943. DOI: 10.3748/wjg.v22.i45.9933.
    [13] LUNT SY, VANDER HEIDEN MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation[J]. Annu Rev Cell Dev Biol, 2011, 27: 441-464. DOI: 10.1146/annurev-cellbio-092910-154237.
    [14] SCIACOVELLI M, GAUDE E, HILVO M, et al. The metabolic alterations of cancer cells[J]. Methods Enzymol, 2014, 542: 1-23. DOI: 10.1016/B978-0-12-416618-9.00001-7.
    [15] LIU J, JIANG S, ZHAO Y, et al. Geranylgeranyl diphosphate synthase (GGPPS) regulates non-alcoholic fatty liver disease (NAFLD)-fibrosis progression by determining hepatic glucose/fatty acid preference under high-fat diet conditions[J]. J Pathol, 2018, 246(3): 277-288. DOI: 10.1002/path.5131.
    [16] KORS L, RAMPANELLI E, STOKMAN G, et al. Deletion of NLRX1 increases fatty acid metabolism and prevents diet-induced hepatic steatosis and metabolic syndrome[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt A): 1883-1895. DOI: 10.1016/j.bbadis.2018.03.003.
    [17] SHANNON CE, RAGAVAN M, PALAVICINI JP, et al. Insulin resistance is mechanistically linked to hepatic mitochondrial remodeling in non-alcoholic fatty liver disease[J]. Mol Metab, 2021, 45: 101154. DOI: 10.1016/j.molmet.2020.101154.
    [18] WANG T, CHEN K, YAO W, et al. Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance[J]. J Hepatol, 2021, 74(5): 1038-1052. DOI: 10.1016/j.jhep.2020.11.028.
    [19] SHIMADA K, CROTHER TR, KARLIN J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis[J]. Immunity, 2012, 36(3): 401-414. DOI: 10.1016/j.immuni.2012.01.009.
    [20] XU F, GUO M, HUANG W, et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH[J]. Redox Biol, 2020, 36: 101634. DOI: 10.1016/j.redox.2020.101634.
    [21] SUN M, KISSELEVA T. Reversibility of liver fibrosis[J]. Clin Res Hepatol Gastroenterol, 2015, 39(Suppl 1): S60-S63. DOI: 10.1016/j.clinre.2015.06.015.
    [22] WANG F, JIA Y, LI M, et al. Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells[J]. Cell Commun Signal, 2019, 17(1): 11. DOI: 10.1186/s12964-019-0324-8.
    [23] WAN L, XIA T, DU Y, et al. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells[J]. FASEB J, 2019, 33(7): 8530-8542. DOI: 10.1096/fj.201802675R.
    [24] HUANG T, LI YQ, ZHOU MY, et al. Focal adhesion kinase-related non-kinase ameliorates liver fibrosis by inhibiting aerobic glycolysis via the FAK/Ras/c-myc/ENO1 pathway[J]. World J Gastroenterol, 2022, 28(1): 123-139. DOI: 10.3748/wjg.v28.i1.123.
    [25] RAO J, WANG H, NI M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut, 2022. DOI: 10.1136/gutjnl-2021-325150.[Online ahead of print]
    [26] ZHENG D, JIANG Y, QU C, et al. Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis[J]. Am J Pathol, 2020, 190(11): 2267-2281. DOI: 10.1016/j.ajpath.2020.08.002.
    [27] ZHOU MY, CHENG ML, HUANG T, et al. Transforming growth factor beta-1 upregulates glucose transporter 1 and glycolysis through canonical and noncanonical pathways in hepatic stellate cells[J]. World J Gastroenterol, 2021, 27(40): 6908-6926. DOI: 10.3748/wjg.v27.i40.6908.
    [28] BAN D, HUA S, ZHANG W, et al. Costunolide reduces glycolysis-associated activation of hepatic stellate cells via inhibition of hexokinase-2[J]. Cell Mol Biol Lett, 2019, 24: 52. DOI: 10.1186/s11658-019-0179-4.
    [29] MATHUPALA SP, KO YH, PEDERSEN PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy[J]. Semin Cancer Biol, 2009, 19(1): 17-24. DOI: 10.1016/j.semcancer.2008.11.006.
    [30] VAUPEL P, SCHMIDBERGER H, MAYER A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression[J]. Int J Radiat Biol, 2019, 95(7): 912-919. DOI: 10.1080/09553002.2019.1589653.
    [31] DEWAAL D, NOGUEIRA V, TERRY AR, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018, 9(1): 446. DOI: 10.1038/s41467-017-02733-4.
    [32] MATHUPALA SP, KO YH, PEDERSEN PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy[J]. Semin Cancer Biol, 2009, 19(1): 17-24. DOI: 10.1016/j.semcancer.2008.11.006.
    [33] KANAI S, SHIMADA T, NARITA T, et al. Phosphofructokinase-1 subunit composition and activity in the skeletal muscle, liver, and brain of dogs[J]. J Vet Med Sci, 2019, 81(5): 712-716. DOI: 10.1292/jvms.19-0049.
    [34] BARTRONS R, RODRÍGUEZ-GARCÍA A, SIMON-MOLAS H, et al. The potential utility of PFKFB3 as a therapeutic target[J]. Expert Opin Ther Targets, 2018, 22(8): 659-674. DOI: 10.1080/14728222.2018.1498082.
    [35] LI S, DAI W, MO W, et al. By inhibiting PFKFB3, aspirin overcomes sorafenib resistance in hepatocellular carcinoma[J]. Int J Cancer, 2017, 141(12): 2571-2584. DOI: 10.1002/ijc.31022.
    [36] van NIEKERK G, ENGELBRECHT AM. Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target[J]. Cell Oncol (Dordr), 2018, 41(4): 343-351. DOI: 10.1007/s13402-018-0383-7.
    [37] AZOITEI N, BECHER A, STEINESTEL K, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation[J]. Mol Cancer, 2016, 15: 3. DOI: 10.1186/s12943-015-0490-2.
    [38] LUO W, HU H, CHANG R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J]. Cell, 2011, 145(5): 732-744. DOI: 10.1016/j.cell.2011.03.054.
    [39] WONG N, OJO D, YAN J, et al. PKM2 contributes to cancer metabolism[J]. Cancer Lett, 2015, 356(2 Pt A): 184-191. DOI: 10.1016/j.canlet.2014.01.031.
    [40] FENG J, WU L, JI J, et al. PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 204. DOI: 10.1186/s13046-019-1194-z.
    [41] LIU B, JIN J, ZHANG Z, et al. Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway[J]. Biochem Cell Biol, 2019, 97(4): 397-405. DOI: 10.1139/bcb-2018-0310.
    [42] LING Y, YAN GJ, FENG F, et al. Association between cholesterol and liver regeneration and its significance and potential value in clinical treatment of liver failure[J]. J Clin Hepatol, 2022, 38(3): 708-713. DOI: 10.3969/j.issn.1001-5256.2022.03.044.

    林镛, 颜耿杰, 冯逢, 等. 胆固醇与肝再生关系及其在肝衰竭治疗中的意义和潜在价值[J]. 临床肝胆病杂志, 2022, 38(3): 708-713. DOI: 10.3969/j.issn.1001-5256.2022.03.044.
    [43] WANG Y, LI X, CHEN Q, et al. Histone deacetylase 6 regulates the activation of M1 macrophages by the glycolytic pathway during acute liver failure[J]. J Inflamm Res, 2021, 14: 1473-1485. DOI: 10.2147/JIR.S302391.
    [44] WANG XF, SHI QL, WANG MG, et al. Experimental study on effect of Jiedu Huayu granules on hepatic mitochondrial permeability transition in rats with acute liver failure[J]. Liaoning J Tradit Chin Med, 2017, 44(10): 2186-2189. DOI: 10.13192/j.issn.1000-1719.2017.10.056.

    王秀峰, 石清兰, 王明刚, 等. 解毒化瘀颗粒抑制急性肝衰竭大鼠肝线粒体通透性转换的实验研究[J]. 辽宁中医杂志, 2017, 44(10): 2186-2189. DOI: 10.13192/j.issn.1000-1719.2017.10.056.
    [45] ZHANG RZ, MAO DW, SUN KW, et al. Mechanism of action of Jieduhuayu granules for remission of oxidative stress in hepatocytes[J]. Chin J Hepatol, 2021, 29(12): 1188-1193. DOI: 10.3760/cma.j.cn501113-20210721-00349.

    张荣臻, 毛德文, 孙克伟, 等. 解毒化瘀颗粒缓解肝细胞氧化应激的作用机制[J]. 中华肝脏病杂志, 2021, 29(12): 1188-1193. DOI: 10.3760/cma.j.cn501113-20210721-00349.
  • 加载中
图(1)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  673
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 录用日期:  2022-05-29
  • 出版日期:  2022-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回