中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝癌微环境靶向与免疫治疗的研究现状

朱明强 丁佑铭

引用本文:
Citation:

肝癌微环境靶向与免疫治疗的研究现状

DOI: 10.3969/j.issn.1001-5256.2022.08.038
基金项目: 

中央引导地方科技发展专项 (2019A4005)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:朱明强负责撰写论文;丁佑铭指导撰写文章并最后定稿。
详细信息
    通信作者:

    丁佑铭,dingym62@163.com

Current status of the research on microenvironment-targeting therapy and immunotherapy for liver cancer

Research funding: 

The Central Government Guides Local Science And Technology Development Projects (2019A4005)

More Information
    Corresponding author: DING Youming, dingym62@163.com(ORCID: 0000-0001-6695-3275)
  • 摘要: 肿瘤微环境是指肿瘤细胞及其所处的内外环境组成,组成成分因肿瘤类型而略有不同。肝癌微环境是由肝癌细胞、免疫细胞等共同构建的促癌微环境,通过招募炎症细胞、抑制抗肿瘤免疫反应、促进血管生成和促进肿瘤耐药导致肝癌的发生,并导致侵袭和转移。本文讨论了肝癌微环境特征、肝癌微环境的组成和作用以及靶向肝癌微环境肝癌治疗的新进展。

     

  • [1] YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
    [2] ANDERSON NM, SIMON MC. The tumor microenvironment[J]. Curr Biol, 2020, 30(16): R921-921R. DOI: 10.1016/j.cub.2020.06.081.
    [3] JIANG SS, TANG Y, ZHANG YJ, et al. A phase Ⅰ clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma[J]. Oncotarget, 2015, 6(38): 41339-41349. DOI: 10.18632/oncotarget.5463.
    [4] ZHOU SL, ZHOU ZJ, HU ZQ, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib[J]. Gastroenterology, 2016, 150(7): 1646-1658. e17. DOI: 10.1053/j.gastro.2016.02.040.
    [5] CAO X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease[J]. Nat Rev Immunol, 2016, 16(1): 35-50. DOI: 10.1038/nri.2015.8.
    [6] WAKISAKA N, HASEGAWA Y, YOSHIMOTO S, et al. Primary tumor-secreted lymphangiogenic factors induce pre-metastatic lymphvascular niche formation at sentinel lymph nodes in oral squamous cell carcinoma[J]. PLoS One, 2015, 10(12): e0144056. DOI: 10.1371/journal.pone.0144056.
    [7] SEEHAWER M, HEINZMANN F, D'ARTISTA L, et al. Necroptosis microenvironment directs lineage commitment in liver cancer[J]. Nature, 2018, 562(7725): 69-75. DOI: 10.1038/s41586-018-0519-y.
    [8] DONG LQ, PENG LH, MA LJ, et al. Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma[J]. J Hepatol, 2020, 72(5): 896-908. DOI: 10.1016/j.jhep.2019.12.014.
    [9] SUN Y, WU L, ZHONG Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma[J]. Cell, 2021, 184(2): 404-421. e16. DOI: 10.1016/j.cell.2020.11.041.
    [10] AFFO S, YU LX, SCHWABE RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer[J]. Annu Rev Pathol, 2017, 12: 153-186. DOI: 10.1146/annurev-pathol-052016-100322.
    [11] YAVUZ BG, PESTANA RC, ABUGABAL YI, et al. Origin and role of hepatic myofibroblasts in hepatocellular carcinoma[J]. Oncotarget, 2020, 11(13): 1186-1201. DOI: 10.18632/oncotarget.27532.
    [12] DENG Y, CHENG J, FU B, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells[J]. Oncogene, 2017, 36(8): 1090-1101. DOI: 10.1038/onc.2016.273.
    [13] ZHOU Y, REN H, DAI B, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts[J]. J Exp Clin Cancer Res, 2018, 37(1): 324. DOI: 10.1186/s13046-018-0965-2.
    [14] JI Q, ZHOU L, SUI H, et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation[J]. Nat Commun, 2020, 11(1): 1211. DOI: 10.1038/s41467-020-14869-x.
    [15] WILSON JL, NÄGELE T, LINKE M, et al. Inverse data-driven modeling and multiomics analysis reveals phgdh as a metabolic checkpoint of macrophage polarization and proliferation[J]. Cell Rep, 2020, 30(5): 1542-1552. e7. DOI: 10.1016/j.celrep.2020.01.011.
    [16] PETTY AJ, LI A, WANG X, et al. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment[J]. J Clin Invest, 2019, 129(12): 5151-5162. DOI: 10.1172/JCI128644.
    [17] WU L, ZHANG X, ZHENG L, et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis[J]. Cancer Immunol Res, 2020, 8(5): 710-721. DOI: 10.1158/2326-6066.CIR-19-0261.
    [18] SHARMA A, SEOW J, DUTERTRE CA, et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma[J]. Cell, 2020, 183(2): 377-394. e21. DOI: 10.1016/j.cell.2020.08.040.
    [19] DING T, XU J, WANG F, et al. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection[J]. Hum Pathol, 2009, 40(3): 381-389. DOI: 10.1016/j.humpath.2008.08.011.
    [20] DI PILATO M, KFURI-RUBENS R, PRUESSMANN JN, et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment[J]. Cell, 2021, 184(17): 4512-4530. e22. DOI: 10.1016/j.cell.2021.07.015.
    [21] HUANG D, CHEN X, ZENG X, et al. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer[J]. Nat Immunol, 2021, 22(7): 865-879. DOI: 10.1038/s41590-021-00939-9.
    [22] MAJ T, WANG W, CRESPO J, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor[J]. Nat Immunol, 2017, 18(12): 1332-1341. DOI: 10.1038/ni.3868.
    [23] CÓZAR B, GREPPI M, CARPENTIER S, et al. Tumor-infiltrating natural killer cells[J]. Cancer Discov, 2021, 11(1): 34-44. DOI: 10.1158/2159-8290.CD-20-0655.
    [24] HARMON C, ROBINSON MW, FAHEY R, et al. Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver[J]. Eur J Immunol, 2016, 46(9): 2111-2120. DOI: 10.1002/eji.201646559.
    [25] POZNANSKI SM, SINGH K, RITCHIE TM, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment[J]. Cell Metab, 2021, 33(6): 1205-1220. e5. DOI: 10.1016/j.cmet.2021.03.023.
    [26] TALMADGE JE, GABRILOVICH DI. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10): 739-752. DOI: 10.1038/nrc3581.
    [27] TIAN X, SHEN H, LI Z, et al. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment[J]. J Hematol Oncol, 2019, 12(1): 84. DOI: 10.1186/s13045-019-0772-z.
    [28] LIAO W, OVERMAN MJ, BOUTIN AT, et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer[J]. Cancer Cell, 2019, 35(4): 559-572. e7. DOI: 10.1016/j.ccell.2019.02.008.
    [29] CONSTANTINO J, GOMES C, FALCÃ OA, et al. Dendritic cell-based immunotherapy: a basic review and recent advances[J]. Immunol Res, 2017, 65(4): 798-810. DOI: 10.1007/s12026-017-8931-1.
    [30] SZCZERBA BM, CASTRO-GINER F, VETTER M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression[J]. Nature, 2019, 566(7745): 553-557. DOI: 10.1038/s41586-019-0915-y.
    [31] WEN ZF, LIU H, GAO R, et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1[J]. J Immunother Cancer, 2018, 6(1): 151. DOI: 10.1186/s40425-018-0452-5.
    [32] ANDZINSKI L, KASNITZ N, STAHNKE S, et al. Type Ⅰ IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human[J]. Int J Cancer, 2016, 138(8): 1982-1993. DOI: 10.1002/ijc.29945.
    [33] WANG D, BAI N, HU X, et al. Preoperative inflammatory markers of NLR and PLR as indicators of poor prognosis in resectable HCC[J]. Peer J, 2019, 7: e7132. DOI: 10.7717/peerj.7132.
    [34] RUHLAND MK, ROBERTS EW, CAI E, et al. Visualizing synaptic transfer of tumor antigens among dendritic cells[J]. Cancer Cell, 2020, 37(6): 786-799. e5. DOI: 10.1016/j.ccell.2020.05.002.
    [35] XIANG Y, YAO X, WANG X, et al. Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: in vivo and in vitro[J]. Biosci Rep, 2019, 39(10): 1006. DOI: 10.1042/BSR20191006.
    [36] ZHANG N, YIN R, ZHOU P, et al. DLL1 orchestrates CD8+ T cells to induce long-term vascular normalization and tumor regression[J]. Proc Natl Acad Sci U S A, 2021, 118(22): e2020057118. DOI: 10.1073/pnas.2020057118.
    [37] ZHAO W, CAO L, YING H, et al. Endothelial CDS2 deficiency causes VEGFA-mediated vascular regression and tumor inhibition[J]. Cell Res, 2019, 29(11): 895-910. DOI: 10.1038/s41422-019-0229-5.
    [38] CORN KC, WINDHAM MA, RAFAT M. Lipids in the tumor microenvironment: From cancer progression to treatment[J]. Prog Lipid Res, 2020, 80: 101055. DOI: 10.1016/j.plipres.2020.101055.
    [39] HAUGE A, ROFSTAD EK. Antifibrotic therapy to normalize the tumor microenvironment[J]. J Transl Med, 2020, 18(1): 207. DOI: 10.1186/s12967-020-02376-y.
    [40] WAN S, ZHAO E, KRYCZEK I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014, 147(6): 1393-1404. DOI: 10.1053/j.gastro.2014.08.039.
    [41] LIU Q, ZHU H, TIRUTHANI K, et al. Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma[J]. ACS Nano, 2018, 12(2): 1250-1261. DOI: 10.1021/acsnano.7b07384.
    [42] CUI X, MA C, VASUDEVARAJA V, et al. Dissecting the immunosuppressive tumor microenvironments in glioblastoma-on-a-chip for optimized PD-1 immunotherapy[J]. Elife, 2020, 9: e52253. DOI: 10.7554/eLife.52253.
    [43] KANG FB, WANG L, LI D, et al. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression[J]. Oncol Rep, 2015, 33(1): 274-282. DOI: 10.3892/or.2014.3587.
    [44] LI M, LI S, ZHOU H, et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy[J]. Nat Commun, 2020, 11(1): 1126. DOI: 10.1038/s41467-020-14963-0.
    [45] ROHANI N, HAO L, ALEXIS MS, et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes[J]. Cancer Res, 2019, 79(8): 1952-1966. DOI: 10.1158/0008-5472.CAN-18-1604.
    [46] WU Q, ZHOU L, LV D, et al. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression[J]. J Hematol Oncol, 2019, 12(1): 53. DOI: 10.1186/s13045-019-0739-0.
    [47] BADER JE, VOSS K, RATHMELL JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy[J]. Mol Cell, 2020, 78(6): 1019-1033. DOI: 10.1016/j.molcel.2020.05.034.
    [48] DUPERRET EK, TRAUTZ A, AMMONS D, et al. Alteration of the tumor stroma using a consensus DNA vaccine targeting fibroblast activation protein (FAP) synergizes with antitumor vaccine therapy in mice[J]. Clin Cancer Res, 2018, 24(5): 1190-1201. DOI: 10.1158/1078-0432.CCR-17-2033.
    [49] PARK AK, FONG Y, KIM SI, et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors[J]. Sci Transl Med, 2020, 12(559): eaaz1863. DOI: 10.1126/scitranslmed.aaz1863.
    [50] CHEN Y, ZANDER RA, WU X, et al. BATF regulates progenitor to cytolytic effector CD8+ T cell transition during chronic viral infection[J]. Nat Immunol, 2021, 22(8): 996-1007. DOI: 10.1038/s41590-021-00965-7.
  • 加载中
计量
  • 文章访问数:  494
  • HTML全文浏览量:  184
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 录用日期:  2022-02-23
  • 出版日期:  2022-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回