中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌体在原发性胆汁性胆管炎中作用的研究进展

马海涛 唐映梅

引用本文:
Citation:

外泌体在原发性胆汁性胆管炎中作用的研究进展

DOI: 10.3969/j.issn.1001-5256.2022.08.035
基金项目: 

国家自然科学基金项目 (81760107);

云南省自然科学基金项目 (2018FE001〔-051〕);

昆明医科大学研究生创新基金项目 (2021S050)

利益冲突声明:所有作者均不存在利益冲突。
作者贡献声明:马海涛负责起草文章,对行文的思路和设计有关键贡献;唐映梅参与了修改文章关键内容。
详细信息
    通信作者:

    唐映梅,tangyingmei_med@kmmu.edu.cn

Research advances in exosomes in primary biliary cholangitis

Research funding: 

National Natural Science Foundation of China (81760107);

Natural Science Foundation of Yunnan Province (2018FE001〔-051〕);

Graduate student Innovation Fund of Kunming Medical University (2021S050)

More Information
  • 摘要: 原发性胆汁性胆管炎(PBC)是一种以胆汁淤积为特征的自身免疫性疾病。近年来国内外多项研究表明,外泌体在PBC疾病的发生发展中发挥重要作用,是目前医学研究领域的一大热点。本文主要从外泌体在PBC发病中的作用及其在PBC诊断和治疗中的研究进展等方面展开综述。外泌体在PBC疾病中的应用前景十分广阔,深入研究外泌体也将为PBC的诊疗带来新的机遇。

     

  • 图  1  外泌体在PBC疾病中的作用机制示意图

    注:a,循环外泌体调节不同APC共刺激分子差异表达;b,胆管细胞来源的外泌体H19向Kupffer细胞和HSC内转移,产生多种生物学效应。

    Figure  1.  The schematic diagram of the role of exosomes in PBC disease

  • [1] LLEO A, WANG G, GERSHWIN M, et al. Primary biliary cholangitis[J]. Lancet (London, England), 2020, 396(10266): 1915-1926. DOI: 10.1016/S0140-6736(20)31607-X.
    [2] GULAMHUSEIN AF, HIRSCHFIELD GM. Primary biliary cholangitis: pathogenesis and therapeutic opportunities[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2): 93-110. DOI: 10.1038/s41575-019-0226-7.
    [3] YOKODA RT, CAREY EJ. Primary biliary cholangitis and primary sclerosing cholangitis[J]. Am J Gastroenterol, 2019, 114(10): 1593-1605. DOI: 10.14309/ajg.0000000000000268.
    [4] BANALES JM, HUEBERT RC, KARLSEN T, et al. Cholangiocyte pathobiology[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(5): 269-281. DOI: 10.1038/s41575-019-0125-y.
    [5] PEGTEL DM, GOULD SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514. DOI: 10.1146/annurev-biochem-013118-111902.
    [6] JIAO Y, XU P, SHI H, et al. Advances on liver cell-derived exosomes in liver diseases[J]. J Cell Mol Med, 2021, 25(1): 15-26. DOI: 10.1111/jcmm.16123.
    [7] van NIEL G, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. DOI: 10.1038/nrm.2017.125.
    [8] SUNG S, KIM J, JUNG Y. Liver-derived exosomes and their implications in liver pathobiology[J]. Int J Mol Sci, 2018, 19(12): 3715. DOI: 10.3390/ijms19123715.
    [9] DUAN W, ZHANG W, JIA J, et al. Exosomal microRNA in autoimmunity[J]. Cell Mol Immunol, 2019, 16(12): 932-934. DOI: 10.1038/s41423-019-0319-9.
    [10] KALLURI R, LEBLEU VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. DOI: 10.1126/science.aau6977.
    [11] ANEL A, GALLEGO-LLEYDA A, de MIGUEL D, et al. Role of Exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease[J]. Cells, 2019, 8(2): 154. DOI: 10.3390/cells8020154.
    [12] MIAO C, WANG X, ZHOU W, et al. The emerging roles of exosomes in autoimmune diseases, with special emphasis on microRNAs in exosomes[J]. Pharmacol Res, 2021, 169: 105680. DOI: 10.1016/j.phrs.2021.105680.
    [13] MA WT, CHEN DK. Immunological abnormalities in patients with primary biliary cholangitis[J]. Clin Sci (Lond), 2019, 133(6): 741-760. DOI: 10.1042/CS20181123.
    [14] TOMIYAMA T, YANG GX, ZHAO M, et al. The modulation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis[J]. Cell Mol Immunol, 2017, 14(3): 276-284. DOI: 10.1038/cmi.2015.86.
    [15] CHENG J, WU R, LONG L, et al. miRNA-451a Targets IFN regulatory factor 8 for the progression of systemic lupus erythematosus[J]. Inflammation, 2017, 40(2): 676-687. DOI: 10.1007/s10753-017-0514-8.
    [16] FOTOH DS, NORELDIN RI, RIZK M S, et al. miRNA-451a and miRNA-125a expression levels in ankylosing spondylitis: impact on disease diagnosis, prognosis, and outcomes[J]. J Immunol Res, 2020, 2020: 2180913. DOI: 10.1155/2020/2180913.
    [17] SHEN J, HUANG CK, YU H, et al. The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma[J]. J Cell Mol Med, 2017, 21(5): 986-992. DOI: 10.1111/jcmm.12950.
    [18] AL SURAIH MS, TRUSSONI CE, SPLINTER PL, et al. Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor[J]. Liver Int, 2020, 40(10): 2455-2468. DOI: 10.1111/liv.14569.
    [19] POPE C, MISHRA S, RUSSELL J, et al. Targeting H19, an imprinted long non-coding RNA, in hepatic functions and liver diseases[J]. Diseases, 2017, 5(1) : 11. DOI: 10.3390/diseases5010011.
    [20] LI X, LIU R, HUANG Z, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans[J]. Hepatology, 2018, 68(2): 599-615. DOI: 10.1002/hep.29838.
    [21] LIU R, LI X, ZHU W, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis[J]. Hepatology, 2019, 70(4): 1317-1335. DOI: 10.1002/hep.30662.
    [22] REUVENI D, BREZIS MR, BRAZOWSKI E, et al. Interleukin 23 produced by hepatic monocyte-derived macrophages is essential for the development of murine primary biliary cholangitis[J]. Front Immunol, 2021, 12: 718841. DOI: 10.3389/fimmu.2021.718841.
    [23] LI X, LIU R, WANG Y, et al. Cholangiocyte-derived exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions[J]. Cells, 2020, 9(1): 190. DOI: 10.3390/cells9010190.
    [24] CHEN S, JIANG T, LIN H, et al. Fast and ultrasensitive visual detection of exosomes in body fluids for point-of-care disease diagnosis[J]. Anal Chem, 2021, 93(29): 10372-10377. DOI: 10.1021/acs.analchem.1c02136.
    [25] SHAO H, IM H, CASTRO CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4): 1917-1950. DOI: 10.1021/acs.chemrev.7b00534.
    [26] JIAO Y, LU W, XU P, et al. Hepatocyte-derived exosome may be as a biomarker of liver regeneration and prognostic valuation in patients with acute-on-chronic liver failure[J]. Hepatol Int, 2021, 15(4): 957-969. DOI: 10.1007/s12072-021-10217-3.
    [27] COLAPIETRO F, LIEO A, GENERALI E. Antimitochondrial antibodies: from bench to bedside[J]. Clin Rev Allergy Immunol, 2021, 29: 1-12. DOI: 10.1007/s12016-021-08904-y.
    [28] de RIE D, ABUGESSAISA I, ALAM T, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse[J]. Nat Biotechnol, 2017, 35(9): 872-878. DOI: 10.1038/nbt.3947.
    [29] MORI MA, LUDWIG RG, GARCIA-MARTIN R, et al. Extracellular miRNAs: From biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4): 656-673. DOI: 10.1016/j.cmet.2019.07.011.
    [30] OLAIZOLA P, LEE-LAW PY, ARBELAIZ A, et al. MicroRNAs and extracellular vesicles in cholangiopathies[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1293-1307. DOI: 10.1016/j.bbadis.2017.06.026.
    [31] WASIK U, KEMPINSKA-PODHORODECKA A, BOGDANOS DP, et al. Enhanced expression of miR-21 and miR-150 is a feature of anti-mitochondrial antibody-negative primary biliary cholangitis[J]. Mol Med, 2020, 26(1): 8. DOI: 10.1186/s10020-019-0130-1.
    [32] STATELLO L, GUO CJ, CHEN LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118. DOI: 10.1038/s41580-020-00315-9.
    [33] SHAH R, PATEL T, FREEDMAN JE. Circulating extracellular vesicles in human disease[J]. N Engl J Med, 2018, 379(10): 958-966. DOI: 10.1056/NEJMra1704286.
    [34] GUO N, ZHOU Q, HUANG X, et al. Identification of differentially expressed circulating exosomal lncRNAs in IgA nephropathy patients[J]. BMC Immunol, 2020, 21(1): 16. DOI: 10.1186/s12865-020-00344-1.
    [35] SUN Z, YANG S, ZHOU Q, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment[J]. Mol Cancer, 2018, 17(1): 82. DOI: 10.1186/s12943-018-0831-z.
    [36] WANG L, ZHANG J. Exosomal lncRNA AK139128 Derived from Hypoxic cardiomyocytes promotes apoptosis and inhibits cell proliferation in cardiac fibroblasts[J]. Int J Nanomedicine, 2020, 15: 3363-3376. DOI: 10.2147/IJN.S240660.
    [37] KHURANA R, RANCHES G, SCHAFFERER S, et al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease[J]. RNA, 2017, 23(2): 142-152. DOI: 10.1261/rna.058834.116.
    [38] LI Y, TANG R, MA X. Epigenetics of primary biliary cholangitis[J]. Adv Exp Med Biol, 2020, 1253: 259-283. DOI: 10.1007/978-981-15-3449-2_10.
    [39] RODRIGUES PM, PERUGORRIA MJ, SANTOS-LASO A, et al. Primary biliary cholangitis: A tale of epigenetically-induced secretory failure?[J]. J Hepatol, 2018, 69(6): 1371-1383. DOI: 10.1016/j.jhep.2018.08.020.
    [40] GANG D, YU CJ, ZHU S, et al. Application of mesenchymal stem cell-derived exosomes in kidney diseases[J]. Cell Immunol, 2021, 364: 104358. DOI: 10.1016/j.cellimm.2021.104358.
    [41] LOU G, CHEN Z, ZHENG M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases[J]. Exp Mol Med, 2017, 49(6): e346. DOI: 10.1038/emm.2017.63.
    [42] RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway[J]. Stem Cell Res Ther, 2019, 10(1): 98. DOI: 10.1186/s13287-019-1204-2.
    [43] CHEN W, ZHU J, LIN F, et al. Human placenta mesenchymal stem cell-derived exosomes delay H2O2-induced aging in mouse cholangioids[J]. Stem Cell Res Ther, 2021, 12(1): 201. DOI: 10.1186/s13287-021-02271-3.
  • 加载中
图(1)
计量
  • 文章访问数:  564
  • HTML全文浏览量:  106
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 录用日期:  2022-01-15
  • 出版日期:  2022-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回