中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pnpla3 I148M和Tm6sf2 E167K双突变纯合小鼠模型的构建

王孟轲 刘守胜 褚雪汝 王艺奋 辛永宁

引用本文:
Citation:

Pnpla3 I148M和Tm6sf2 E167K双突变纯合小鼠模型的构建

DOI: 10.3969/j.issn.1001-5256.2022.08.013
基金项目: 

国家自然科学基金面上项目 (31770837)

伦理学声明:实验所用动物均按照青岛大学附属医院医学实验动物伦理委员会批准的原则进行。伦理审批编号:AHQU-MAL20180504,伦理通过时间2018年5月4日。
利益冲突声明:本研究不存在研究者、伦理委员会成员以及与公开研究成果有关的利益冲突。
作者贡献声明:王孟轲进行课题设计与实施、撰写论文;刘守胜进行课题设计、论文审阅;褚雪汝、王艺奋进行课题实施、数据收集;辛永宁进行课题设计、实验指导和提供经费。
详细信息
    通信作者:

    辛永宁,xinyongning@163.com

Construction of Pnpla3 I148M and Tm6sf2 E167K double mutant mouse model

Research funding: 

National Natural Science Foundation of China (31770837)

More Information
  • 摘要:   目的  利用Pnpla3148M/M纯合小鼠与Tm6sf2167K/K纯合小鼠杂交方法构建Pnpla3148M/M Tm6sf2167K/K双突变小鼠模型。  方法  利用Pnpla3 Ⅰ 148M和Tm6sf2 E 167K单突变纯合小鼠交配出Pnpla3148M/M Tm6sf2167K/K双突变杂合小鼠,再通过自交得到Pnpla3148M/M Tm6sf2167K/K双突变纯合小鼠。选取同窝的Pnpla3148M/M Tm6sf2167K/K(n=6)、Pnpla3148M/M Tm6sf2167E/E(n=6)、Pnpla3148I/I Tm6sf2167K/K(n=6)和野生(Wt)(n=6)雄性小鼠普通饮食喂养8周,在第8周检测小鼠葡萄糖及脂质代谢等指标。多组间比较采用方差分析,进一步两两比较采用LSD-t检验。  结果  琼脂糖凝胶电泳和核酸测序结果表明Pnpla3148M/M Tm6sf2167K/K双突变小鼠模型构建成功。Pnpla3148M/M Tm6sf2167K/K小鼠体质量与其他3种基因型小鼠比较,差异无统计学意义(P值均>0.05),Pnpla3148M/M Tm6sf2167K/K小鼠肝湿重高于Wt小鼠(P<0.05)。Pnpla3148M/M Tm6sf2167K/K小鼠的空腹血糖低于Tm6sf2167K/K单突变小鼠和Wt小鼠(P值均<0.05),Pnpla3148M/M Tm6sf2167K/K小鼠葡萄糖耐受能力较Tm6sf2167K/K单突变小鼠有所下降(P<0.05),四组基因型小鼠的胰岛素水平无明显差异(P值均>0.05)。Pnpla3148M/M Tm6sf2167K/K双突变小鼠的血浆生化指标与其他三种基因型小鼠比较,差异均无统计学意义(P值均>0.05)。肝脏油红O切片染色结果显示Pnpla3148M/M Tm6sf2167K/K双突变小鼠的肝脏较Pnpla3148M/M单突变小鼠和Wt小鼠更容易发生脂质积累。  结论  Pnpla3148M/M Tm6sf2167K/K双突变小鼠模型构建成功,Pnpla3 Ⅰ 148M和Tm6sf2 E 167K双突变可引起小鼠葡萄糖代谢异常。

     

  • 图  1  Pnpla3148M/M Tm6sf2167K/K双突变纯合小鼠繁育策略

    注:Wt为野生小鼠;×代表杂交;⊗代表自交。

    Figure  1.  Breeding strategy of Pnpla3148M/M Tm6sf2167K/K double mutant homozygous mice

    图  2  Pnpla3 I148M和Tm6sf2 E167K突变小鼠基因型鉴定和测序结果

    注:a,Tm6sf2 E167K突变小鼠基因型鉴定电泳结果;b,Pnpla3 I148M突变小鼠基因型鉴定电泳结果;c、d和e为Pnpla3 I148M突变小鼠基因型鉴定测序结果(c,Pnpla3148M/M;d,Pnpla3148I/M;e,Pnpla3148I/I)。

    Figure  2.  Genotype identification and sequencing results of Pnpla3 I148M and Tm6sf2 E167K mutant mice

    图  3  四种基因型小鼠在8周龄时的体质量、肝湿重和肝指数比较

    Figure  3.  Comparison of body weight, liver weight, and liver index of mice with four genotypes at 8 weeks of age

    图  4  四种基因型小鼠各个器官的形态比较

    注:a, Pnpla3148M/M Tm6sf2167K/K基因型小鼠; b, Pnpla3148M/M Tm6sf2167E/E基因型小鼠;c, Pnpla3148I/I Tm6sf2167K/K基因型小鼠; d, Wt小鼠。

    Figure  4.  Morphological comparison of organs in mice with four genotypes

    图  5  四种基因型小鼠葡萄糖耐量比较

    注:*P<0.05;* *P<0.01。

    Figure  5.  Comparison of glucose tolerance of mice with four genotypes

    图  6  四种基因型小鼠血浆生化水平

    Figure  6.  Plasma biochemical levels of mice with four genotypes

    图  7  四组基因型小鼠肝脏HE染色(×200)

    注:a,Wt;b,Pnpla3148M/M Tm6sf2167E/E; c,Pnpla3148I/I Tm6sf2167K/K; d,Pnpla3148M/M Tm6sf2167K/K

    Figure  7.  HE staining of liver of mice with four genotypes (×200)

    图  8  四组基因型小鼠肝脏油红O染色(×200)

    注:a,Wt;b,Pnpla3148M/M Tm6sf2167E/E; c,Pnpla3148I/I Tm6sf2167K/K; d,Pnpla3148M/M Tm6sf2167K/K

    Figure  8.  Oil red O staining of liver of mice with four genotypes (×200)

    表  1  小鼠基因型鉴定引物序列

    Table  1.   Primer sequences for mouse genotypic identification

    PCR引物名称 引物序列(5′-3′)
    Pnpla3-wt-tF1 ATCTCTGTGAGTTCGATTGCCAG
    Pnpla3-wt-tR1 AGTGTATCCAACAGACAGCAGGC
    Tm6sf2-wt-tF1 GGCCTTTCCTAGACTCCTCA
    Tm6sf2-wt-tR1 CCTTCTCAGATGTTCCTCCCT
    下载: 导出CSV

    表  2  Pnpla3小鼠基因型测序引物序列

    Table  2.   Primer sequences for Pnpla3 mouse genotype sequencing

    PCR引物名称 引物序列(5′-3′)
    Pnpla3-wt-tR1 AGTGTATCCAACAGACAGCAGGC
    下载: 导出CSV

    表  3  Pnpla3148I/M Tm6sf2167E/K小鼠自交后子代各基因型数量

    Table  3.   Number of progenies with each genotype after Pnpla3148I/ MTM6SF2167E/K mice self-breeding

    小鼠基因型 数量 占总体的百分比(%)
    Pnpla3148M/M Tm6sf2167K/K 13 6.2
    杂合小鼠 151 71.9
    Pnpla3148M/M Tm6sf2167E/E 11 5.2
    Pnpla3148I/I Tm6sf2167K/K 18 8.6
    Wt小鼠 17 8.1
    下载: 导出CSV
  • [1] FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. DOI: 10.1038/s41591-018-0104-9.
    [2] YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
    [3] ARON-WISNEWSKY J, VIGLIOTTI C, WITJES J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5): 279-297. DOI: 10.1038/s41575-020-0269-9.
    [4] WATT MJ, MIOTTO PM, de NARDO W, et al. The liver as an endocrine organ-linking NAFLD and insulin resistance[J]. Endocr Rev, 2019, 40(5): 1367-1393. DOI: 10.1210/er.2019-00034.
    [5] POWELL EE, WONG VW, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224. DOI: 10.1016/S0140-6736(20)32511-3.
    [6] TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 32-42. DOI: 10.1038/nrgastro.2016.147.
    [7] TRÉPO E, ROMEO S, ZUCMAN-ROSSI J, et al. PNPLA3 gene in liver diseases[J]. J Hepatol, 2016, 65(2): 399-412. DOI: 10.1016/j.jhep.2016.03.011.
    [8] BASU RAY S. PNPLA3-I148M: a problem of plenty in non-alcoholic fatty liver disease[J]. Adipocyte, 2019, 8(1): 201-208. DOI: 10.1080/21623945.2019.1607423.
    [9] KOZLITINA J, SMAGRIS E, STENDER S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2014, 46(4): 352-356. DOI: 10.1038/ng.2901.
    [10] O'HARE EA, YANG R, YERGES-ARMSTRONG LM, et al. TM6SF2 rs58542926 impacts lipid processing in liver and small intestine[J]. Hepatology, 2017, 65(5): 1526-1542. DOI: 10.1002/hep.29021.
    [11] STEFAN N, HÄRING HU, CUSI K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies[J]. Lancet Diabetes Endocrinol, 2019, 7(4): 313-324. DOI: 10.1016/S2213-8587(18)30154-2.
    [12] IOANNOU GN. Epidemiology and risk-stratification of NAFLD-associated HCC[J]. J Hepatol, 2021, 75(6): 1476-1484. DOI: 10.1016/j.jhep.2021.08.012.
    [13] LI JF, ZHENG EQ, XIE M. Association between rs738409 polymorphism in patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene and hepatocellular carcinoma susceptibility: Evidence from case-control studies[J]. Gene, 2019, 685: 143-148. DOI: 10.1016/j.gene.2018.11.012.
    [14] WANG X, LIU Z, WANG K, et al. Additive effects of the risk alleles of PNPLA3 and TM6SF2 on non-alcoholic fatty liver disease (NAFLD) in a Chinese population[J]. Front Genet, 2016, 7: 140. DOI: 10.3389/fgene.2016.00140.
    [15] XU M, LI Y, ZHANG S, et al. Interaction of TM6SF2 E167K and PNPLA3 I148M variants in NAFLD in northeast China[J]. Ann Hepatol, 2019, 18(3): 456-460. DOI: 10.1016/j.aohep.2018.10.005.
    [16] ZHANG J, MA XF, WANG YF, et al. Hepatocyte-specific TM6SF2 knockout aggravates hepatic steatosis in mice with nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2021, 37(11): 2612-2616. DOI: 10.3969/j.issn.1001-5256.2021.11.024.

    张杰, 马学峰, 王艺奋, 等. 肝脏TM6SF2特异性敲除促进非酒精性脂肪性肝病小鼠肝脏脂肪变性[J]. 临床肝胆病杂志, 2021, 37(11): 2612-2616. DOI: 10.3969/j.issn.1001-5256.2021.11.024.
    [17] LAZARUS JV, ANSTEE QM, HAGSTRÖM H, et al. Defining comprehensive models of care for NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(10): 717-729. DOI: 10.1038/s41575-021-00477-7.
    [18] CHEN L, DU S, LU L, et al. The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism[J]. Oncotarget, 2017, 8(43): 74209-74216. DOI: 10.18632/oncotarget.18474.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  783
  • HTML全文浏览量:  139
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 录用日期:  2022-02-25
  • 出版日期:  2022-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回