中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙型肝炎病毒核心蛋白变构调节剂的作用机理及临床研发和应用前景

刘慧 鲁凤民 郭巨涛

引用本文:
Citation:

乙型肝炎病毒核心蛋白变构调节剂的作用机理及临床研发和应用前景

DOI: 10.3969/j.issn.1001-5256.2022.08.005
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:刘慧、郭巨涛负责拟定文章写作思路及文章初稿的撰写;鲁凤明、郭巨涛负责文章内容的修改并最终定稿。
详细信息
    通信作者:

    刘慧, liuhui5215@126.com

Mechanism of action, clinical research and development, and application prospect of hepatitis B virus core protein allosteric modulators

More Information
  • 摘要: HBV感染是导致慢性肝炎的主要致病因素,若不及时、有效地规范治疗,将有进一步发展为肝硬化、肝细胞癌等终末期肝病的风险。临床现有的两类抗病毒药物皆无法彻底抑制病毒复制和清除病毒转录模板,即感染肝细胞内长期存在的共价闭合环状DNA(cccDNA),因而,慢性乙型肝炎患者需长期甚至终身服药。因此,研发新型抗HBV药物显得尤为重要。核心蛋白变构调节剂(CpAM)是一类新型抗HBV药物,其干扰HBV核衣壳装配过程,并对成熟核衣壳解聚、cccDNA形成和HBeAg的产生及分泌发挥抑制作用。因其广泛作用于病毒复制的多个环节,具备较大的应用潜力。本文主要阐述CpAM靶蛋白-核心蛋白的功能、CpAM分类、作用靶点及抗HBV机理、CpAM临床试验现状及进一步研发和应用前景。

     

  • 图  1  CpAM在HBV复制周期中的多重抗病毒作用

    注:Ⅰ型CpAM诱导Cp二聚体形成多种形态的非衣壳结构,并最终经由自噬途径被降解[35];Ⅱ型CpAM加速衣壳组装过程,诱导空衣壳结构产生。就结果而言,两种类型的CpAM皆抑制了pgRNA/pol向核衣壳内的包装从而抑制后续HBV DNA的复制;也促进含rcDNA核衣壳的错误解聚从而抑制了cccDNA的从头合成。除此之外,Ⅰ、Ⅱ型CpAM皆直接作用于细胞内的p17从而抑制了HBeAg的分泌。

    Figure  1.  Multiple anti-HBV effects of CpAM on HBV replication cycle

    表  1  代表性CpAM单一用药临床试验概况

    Table  1.   Overview of monotherapy for representative CpAM in clinical trial

    CpAM名称 类别及特征 血清病毒学指标最大降低(log10 IU/mL或拷贝/mL)
    (与基线相比)
    当前临床试验阶段 支持企业 临床试验注册号
    HBV DNA HBV RNA HBsAg HBeAg HBcrAg
    GLS4JHS Ⅰ型,非衣壳结构形成 3.5 1.78 0.33 0.43 0.5 Ⅱ期 HEC Pharma, PR China NCT03638076,NCT04147208
    ZM-H1505R NR NR NR NR NR Ⅰ期 ZhiMeng Biopharma, PR China NCT04220801
    QL-007 NR NR NR NR NR Ⅱ期 Qilu Pharma, PR China NCT03770624, NCT04157257 NCT03244085, NCT04157699
    RO7049389 <LLOQ 2.77 -0.1~0.2 -0.2~0.0 >1 Ⅱ期 Roche, Switzerland NCT04729309, NCT02952924, NCT04225715
    NVR 3-7781) Ⅱ型,形态正常的空衣壳结构形成 1.43 1.42 1 0.09 0.13 Ⅰ b期 Novira, Janssen Pharmaceutica NCT02112799, NCT02401737
    AB-5062) 2.8 2.4 0.113 NR NR Ⅰ b期 Arbutus Biopharma
    EDP-514 NR NR NR NR NR Ⅰ b期 Enanta, Pharma, USA NCT04470388, NCT04008004
    ABI-H0731 2.8 2 NR NR NR Ⅱ期 Assembly bioscience, USA/Beigene, China NCT02908191
    JNJ-56136379 <LLOQ <LLOQ -0.005~0.03 -0.1 ≥0.5 Ⅱ期 Janssen NCT02662712
    注:NR,无报道;LLOQ,低于定量检测下限。1)后续临床试验暂停;2)后续临床试验终止。
    下载: 导出CSV
  • [1] SEEGER C, MASON WS. Molecular biology of hepatitis B virus infection[J]. Virology, 2015, 479-480: 672-686. DOI: 10.1016/j.virol.2015.02.031.
    [2] YAN H, ZHONG G, XU G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012, 1: e00049. DOI: 10.7554/eLife.00049.
    [3] NASSAL M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B[J]. Gut, 2015, 64(12): 1972-1984. DOI: 10.1136/gutjnl-2015-309809.
    [4] VENKATAKRISHNAN B, ZLOTNICK A. The structural biology of hepatitis b virus: form and function[J]. Annu Rev Virol, 2016, 3(1): 429-451. DOI: 10.1146/annurev-virology-110615-042238.
    [5] SCHMITZ A, SCHWARZ A, FOSS M, et al. Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket[J]. PLoS Pathog, 2010, 6(1): e1000741. DOI: 10.1371/journal.ppat.1000741.
    [6] HU Z, BAN H, ZHENG H, et al. Protein phosphatase 1 catalyzes HBV core protein dephosphorylation and is co-packaged with viral pregenomic RNA into nucleocapsids[J]. PLoS Pathog, 2020, 16(7): e1008669. DOI: 10.1371/journal.ppat.1008669.
    [7] ZHAO Q, HU Z, CHENG J, et al. Hepatitis B virus core protein dephosphorylation occurs during pregenomic RNA encapsidation[J]. J Virol, 2018, 92(13). DOI: 10.1128/JVI.02139-17.
    [8] NING X, NGUYEN D, MENTZER L, et al. Secretion of genome-free hepatitis B virus-single strand blocking model for virion morphogenesis of para-retrovirus[J]. PLoS Pathog, 2011, 7(9): e1002255. DOI: 10.1371/journal.ppat.1002255.
    [9] LECOQ L, WANG S, DUJARDIN M, et al. A pocket-factor-triggered conformational switch in the hepatitis B virus capsid[J]. Proc Natl Acad Sci U S A, 2021, 118(17). DOI: 10.1073/pnas.2022464118.
    [10] LIU K, LUCKENBAUGH L, NING X, et al. Multiple roles of core protein linker in hepatitis B virus replication[J]. PLoS Pathog, 2018, 14(5): e1007085. DOI: 10.1371/journal.ppat.1007085.
    [11] TUTTLEMAN JS, POURCEL C, SUMMERS J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells[J]. Cell, 1986, 47(3): 451-460. DOI: 10.1016/0092-8674(86)90602-1.
    [12] HU J, TANG L, CHENG J, et al. Hepatitis B virus nucleocapsid uncoating: biological consequences and regulation by cellular nucleases[J]. Emerg Microbes Infect, 2021, 10(1): 852-864. DOI: 10.1080/22221751.2021.1919034.
    [13] BOCK CT, SCHWINN S, LOCARNINI S, et al. Structural organization of the hepatitis B virus minichromosome[J]. J Mol Biol, 2001, 307(1): 183-196. DOI: 10.1006/jmbi.2000.4481.
    [14] LUCIFORA J, XIA Y, REISINGER F, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA[J]. Science, 2014, 343(6176): 1221-1228. DOI: 10.1126/science.1243462.
    [15] XIA Y, LUCIFORA J, REISINGER F, et al. Virology. Response to comment on "Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA"[J]. Science, 2014, 344(6189): 1237. DOI: 10.1126/science.1254083.
    [16] CHABROLLES H, AUCLAIR H, VEGNA S, et al. Hepatitis B virus core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production[J]. PLoS Pathog, 2020, 16(11): e1008593. DOI: 10.1371/journal.ppat.1008593.
    [17] KING RW, LADNER SK, MILLER TJ, et al. Inhibition of human hepatitis B virus replication by AT-61, a phenylpropenamide derivative, alone and in combination with (-)beta-L-2', 3'-dideoxy-3'-thiacytidine[J]. Antimicrob Agents Chemother, 1998, 42(12): 3179-3186. DOI: 10.1128/AAC.42.12.3179.
    [18] DERES K, SCHRÖDER CH, PAESSENS A, et al. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids[J]. Science, 2003, 299(5608): 893-896. DOI: 10.1126/science.1077215.
    [19] CAMPAGNA MR, LIU F, MAO R, et al. Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids[J]. J Virol, 2013, 87(12): 6931-6942. DOI: 10.1128/JVI.00582-13.
    [20] BOURNE CR, FINN MG, ZLOTNICK A. Global structural changes in hepatitis B virus capsids induced by the assembly effector HAP1[J]. J Virol, 2006, 80(22): 11055-11061. DOI: 10.1128/JVI.00933-06.
    [21] KANG JA, KIM S, PARK M, et al. Ciclopirox inhibits hepatitis B virus secretion by blocking capsid assembly[J]. Nat Commun, 2019, 10(1): 2184. DOI: 10.1038/s41467-019-10200-5.
    [22] LAHLALI T, BERKE JM, VERGAUWEN K, et al. Novel potent capsid assembly modulators regulate multiple steps of the hepatitis B virus life cycle[J]. Antimicrob Agents Chemother, 2018, 62(10): e00835-18. DOI: 10.1128/AAC.00835-18.
    [23] GHAEMI Z, GRUEBELE M, TAJKHORSHID E. Molecular mechanism of capsid disassembly in hepatitis B virus[J]. Proc Natl Acad Sci U S A, 2021, 118(36): e2102530118. DOI: 10.1073/pnas.2102530118.
    [24] VENKATAKRISHNAN B, KATEN SP, FRANCIS S, et al. Hepatitis B virus capsids have diverse structural responses to small-molecule ligands bound to the heteroaryldihydropyrimidine pocket[J]. J Virol, 2016, 90(8): 3994-4004. DOI: 10.1128/JVI.03058-15.
    [25] KATEN SP, CHIRAPU SR, FINN MG, et al. Trapping of hepatitis B virus capsid assembly intermediates by phenylpropenamide assembly accelerators[J]. ACS Chem Biol, 2010, 5(12): 1125-1136. DOI: 10.1021/cb100275b.
    [26] ZHOU Z, HU T, ZHOU X, et al. Heteroaryldihydropyrimidine (HAP) and sulfamoylbenzamide (SBA) inhibit hepatitis B virus replication by different molecular mechanisms[J]. Sci Rep, 2017, 7: 42374. DOI: 10.1038/srep42374.
    [27] KATEN SP, TAN Z, CHIRAPU SR, et al. Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure[J]. Structure, 2013, 21(8): 1406-1416. DOI: 10.1016/j.str.2013.06.013.
    [28] SCHLICKSUP CJ, WANG JC, FRANCIS S, et al. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids[J]. Elife, 2018, 7: e31473. DOI: 10.7554/eLife.31473.
    [29] SCHLICKSUP CJ, LAUGHLIN P, DUNKELBARGER S, et al. Local stabilization of subunit-subunit contacts causes global destabilization of hepatitis B virus capsids[J]. ACS Chem Biol, 2020, 15(6): 1708-1717. DOI: 10.1021/acschembio.0c00320.
    [30] KO C, BESTER R, ZHOU X, et al. A new role for capsid assembly modulators to target mature hepatitis B virus capsids and prevent virus infection[J]. Antimicrob Agents Chemother, 2019, 64(1): e01440-19. DOI: 10.1128/AAC.01440-19.
    [31] GUO F, ZHAO Q, SHERAZ M, et al. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways[J]. PLoS Pathog, 2017, 13(9): e1006658. DOI: 10.1371/journal.ppat.1006658.
    [32] HUANG Q, CAI D, YAN R, et al. Preclinical profile and characterization of the hepatitis B virus core protein inhibitor ABI-H0731[J]. Antimicrob Agents Chemother, 2020, 64(11). DOI: 10.1128/AAC.01463-20.
    [33] LIU H, CHENG J, VISWANATHAN U, et al. Amino acid residues at core protein dimer-dimer interface modulate multiple steps of hepatitis B virus replication and HBeAg biogenesis[J]. PLoS Pathog, 2021, 17(11): e1010057. DOI: 10.1371/journal.ppat.1010057.
    [34] YAN Z, WU D, HU H, et al. Direct inhibition of hepatitis B e antigen by core protein allosteric modulator[J]. Hepatology, 2019, 70(1): 11-24. DOI: 10.1002/hep.30514.
    [35] LIN J, YIN L, XU XZ, et al. Bay41-4109-induced aberrant polymers of hepatitis b capsid proteins are removed via STUB1-promoted p62-mediated macroautophagy[J]. PLoS Pathog, 2022, 18(1): e1010204. DOI: 10.1371/journal.ppat.1010204.
    [36] SELZER L, ZLOTNICK A. Assembly and release of hepatitis B virus[J]. Cold Spring Harb Perspect Med, 2015, 5(12): a021394. DOI: 10.1101/cshperspect.a021394.
    [37] DIMATTIA MA, WATTS NR, STAHL SJ, et al. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein[J]. Structure, 2013, 21(1): 133-142. DOI: 10.1016/j.str.2012.10.017.
    [38] VISWANATHAN U, MANI N, HU Z, et al. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B[J]. Antiviral Res, 2020, 182: 104917. DOI: 10.1016/j.antiviral.2020.104917.
    [39] YUEN MF, GANE EJ, KIM DJ, et al. Antiviral activity, safety, and pharmacokinetics of capsid assembly modulator NVR 3-778 in patients with chronic HBV infection[J]. Gastroenterology, 2019, 156(5): 1392-1403. e7. DOI: 10.1053/j.gastro.2018.12.023.
    [40] ZHAO N, JIA B, ZHAO H, et al. A first-in-human trial of GLS4, a novel inhibitor of hepatitis B virus capsid assembly, following single- and multiple-ascending-oral-dose studies with or without ritonavir in healthy adult volunteers[J]. Antimicrob Agents Chemother, 2019, 64(1): e01686-19. DOI: 10.1128/AAC.01686-19.
    [41] MANI N, COLE AG, PHELPS JR, et al. Preclinical characterization of AB-506, an inhibitor of HBV replication targeting the viral core protein[J]. Antiviral Res, 2022, 197: 105211. DOI: 10.1016/j.antiviral.2021.105211.
    [42] YUEN M, BERLIBA E, SUKEEPAISARNJAROEN W, et al. Safety, tolerability, pharmacokinetics (PK), and antiviral activity of the capsid inhibitor (CI) AB-506 in healthy subjects (HS) and chronic hepatitis B (CHB) subjects[J]. Hepatology, 2019, 70(6): 1492A-1493A.
    [43] LEE A, THI EP, ARDZINSKI A, et al. Hepatitis B virus core protein variants observed in a first-in-human placebo-controlled study of a core protein inhibitor[J]. J Hepatol, 2020, 73: S833.
    [44] YUEN MF, AGARWAL K, GANE EJ, et al. Safety, pharmacokinetics, and antiviral effects of ABI-H0731, a hepatitis B virus core inhibitor: a randomised, placebo-controlled phase 1 trial[J]. Lancet Gastroenterol Hepatol, 2020, 5(2): 152-166. DOI: 10.1016/S2468-1253(19)30346-2.
    [45] YUEN MF, AGARWAL K, MA X, et al. Safety and efficacy of vebicorvir in virologically suppressed patients with chronic hepatitis B virus infection[J]. J Hepatol, 2022. DOI: 10.1016/j.jhep.2022.04.005. [Online ahead of print]
    [46] SULKOWSKI MS, AGARWAL K, MA X, et al. Safety and efficacy of vebicorvir administered with entecavir in treatment-naïve patients with chronic hepatitis B virus infection[J]. J Hepatol, 2022. DOI: 10.1016/j.jhep.2022.05.027. [Online ahead of print]
    [47] GANE E, SULKOWSKI M, MA XL, et al. Viral response and safety following discontinuation of treatment with the core inhibitor vebicorvir and a nucleos(t)ide reverse transcriptase inhibitor in patients with HBeAg positive or negative chronic hepatitis B virus infection(PO-482)[C]// EASL Digital International Liver Conference, June 23-26, 2021.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  813
  • HTML全文浏览量:  161
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-29
  • 录用日期:  2022-07-04
  • 出版日期:  2022-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回