中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基质金属蛋白酶/基质金属蛋白酶水解酶对肝纤维化的调控及相关治疗药物研究进展

黄倩 杨燕 曾锐 姚孟林 孙琴

引用本文:
Citation:

基质金属蛋白酶/基质金属蛋白酶水解酶对肝纤维化的调控及相关治疗药物研究进展

DOI: 10.3969/j.issn.1001-5256.2022.06.042
基金项目: 

四川省科学技术厅项目 (2021YFH0150);

泸州市人民政府-西南医科大学高层次人才引进专项资助项目 (2017RC-002);

西南医科大学-西南医科大学附属中医医院联合项目 (Southwest Medical University〔2018〕 No.6-51)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:黄倩、杨燕对研究的思路或设计有同等的关键贡献;曾锐、张馨月、姚孟林参与了研究数据的获取分析解释过程;孙琴起草或修改文章关键内容。
详细信息
    通信作者:

    孙琴,zxyjhsq@swmu.edu.cn

    黄倩、杨燕对本文贡献等同,为共同第一作者

Regulation of liver fibrosis by matrix metalloproteinase/tissue inhibitor of metalloproteinase and research advances in related therapeutic drugs

Research funding: 

Project of Science and Technology Department of Sichuan Province (2021YFH0150);

Luzhou People's Government-Southwest Medical University High-level Talents Introduction Special funding project (2017RC-002);

Southwest Medical University-Southwest Medical University Affiliated Hospital of Traditional Chinese Medicine Joint Project (Southwest Medical University〔2018〕 No.6-51)

More Information
  • 摘要: 肝纤维化是多种慢性肝损伤的共同后果,其主要特征是细胞外基质(ECM)产生与降解不平衡,导致间质胶原及其他基质成分积聚。而基质金属蛋白酶(MMP)及其特异性抑制剂[金属蛋白酶的组织抑制剂,基质金属蛋白酶水解酶(TIMP)]在胶原生成和溶解中起着关键作用。本文通过文献综述,整合基于MMP/TIMP的肝纤维化实验研究,并总结可能通过影响MMP/TIMP表达或活性发挥抗肝纤维化作用的组分,尝试阐明MMP/TIMP调控胶原平衡的机制,以期为抗肝纤维化药物的开发提供支持。

     

  • 图  1  现已知结构的MMP分类图

    注:信号肽、前肽及具有活化锌的催化结构是MMP的共性结构。

    Figure  1.  Classification diagram of MMP with known structure

    表  1  MMP主要功能分类表

    Table  1.   Main function classification table of MMP

    种类 包含的MMP
    胶原酶 MMP-1、8、13
    明胶酶 MMP-2、9
    基质降解酶 MMP-3、7、10、11、26
    巨噬细胞弹性酶 MMP-12
    膜型基质金属蛋白酶 MMP-14、15、16、17、24、25
    其他 MMP-20、23、27、28
    下载: 导出CSV

    表  2  近5年基于TIMP与MMP发挥抗肝纤维化的天然产物研究情况

    Table  2.   Research on natural products of anti-liver fibrosis based on TIMP and MMP in recent 5 years

    序号 组分名称 模型 MMP/TIMP 其他指标变化
    1 全反式维甲酸[32] E MMP2↓,TIMP1↓ TGFβ1、Smad2/3↓
    2 白果内酯[33] C MMP1↑,TIMP1↓ IL-1/6、TNFα
    3 阿魏酸[34] E MMP2、MMP9↑ TGFβ、Smad3↓
    4 葫芦茶苷[35] A MMP2↓,TIMP1/2↓ TGFβ1、COLⅠ↓
    5 改性果胶[36] A TIMP1↓ COL Ⅰα1、α-SMA、SOD↓
    6 甜菜碱[37] A+C MMP2↓,TIMP1/2↓ HYP、α-SMA↓
    7 水飞蓟[38] A MMP9↑ TGFβ、α-SMA↓
    8 β-香树脂醇[39] A TIMP1↓ TNFα、caspase 3↓
    9 褪黑素[40] A MMP13↑ TGFβ1、SOD↓
    10 柴胡皂苷D[41-42] E MMP2↑,TIMP1/2↓ TGFβ1↓
    11 硫辛酸[43] A MMP13↑ NF-κB↓
    12 潘多汀A[44] D MMP2↓,TIMP1↓ PDGF、TGFβ1↓
    13 异绿原酸[45] C TIMP1↓ LOX、TGFβ1、MCP-1、COL Iα1↓
    14 二氢杨梅素[46] A MMP1↑,TIMP1↓ CoL-1α1、α-SMA↓
    注:COL Ⅰ,Ⅰ型胶原;COL Ⅰα1,Ⅰ型胶原α1亚型;HYP,羟脯氨酸;α-SMA,平滑肌动蛋白;caspase3,胱天蛋白酶3;SOD,超氧化物歧化酶;NF-κB,核因子κB;PDGF,血小板衍生生长因子;LOX,脂氧合酶;MCP-1,单核细胞趋化蛋白-1。A表示CCl4诱导的体内纤维化模型;B表示DMN诱导的体内纤维化模型;C表示MCD诱导的体内肝纤维化模型;D表示硫代乙酰胺诱导的体内纤维化模型;E表示体外肝纤维化模型。
    下载: 导出CSV
  • [1] EZHILARASAN D, SOKAL E, NAJIMI M. Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(3): 192-197. DOI: 10.1016/j.hbpd.2018.04.003.
    [2] SHAN L, LIU Z, CI L, et al. Research progress on the anti-hepatic fibrosis action and mechanism of natural products[J]. Int Immunopharmacol, 2019, 75: 105765. DOI: 10.1016/j.intimp.2019.105765.
    [3] ZHANG J, YANG A, WU Y, et al. Stachydrine ameliorates carbon tetrachloride-induced hepatic fibrosis by inhibiting inflammation, oxidative stress and regulating MMPs/TIMPs system in rats[J]. Biomed Pharmacother, 2018, 97: 1586-1594. DOI: 10.1016/j.biopha.2017.11.117.
    [4] Professional Committee of Liver Diseases, Chinese Society of Integrated Traditional Chinese and Western medicine. Guidelines for the diagnosis and treatment of liver fibrosis with integrated traditional Chinese and Western medicine (2019 edition)[J]. Chin J Integr Med, 2019, 39(11): 1286-1295. DOI: 10.3760/cma.j.issn.1007-3418.2019.07.005.

    中国中西医结合学会肝病专业委员会. 肝纤维化中西医结合诊疗指南(2019年版)[J]. 中国中西医结合杂志, 2019, 39(11): 1286-1295. DOI: 10.3760/cma.j.issn.1007-3418.2019.07.005.
    [5] MINKWITZ S, SCHMOCK A, KURTOGLU A, et al. Time-dependent alterations of MMPs, TIMPs and tendon structure in human achilles tendons after acute rupture[J]. Int J Mol Sci, 2017, 18(10): 2199. DOI: 10.3390/ijms18102199.
    [6] LIU X, LIU D, SHEN Y, et al. Matrix metalloproteinases in invertebrates[J]. Protein Pept Lett, 2020, 27(11): 1068-1081. DOI: 10.2174/0929866527666200429110945.
    [7] ROBERT S, GICQUEL T, VICTONI T, et al. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis[J]. Biosci Rep, 2016, 36(4): e00360. DOI: 10.1042/BSR20160107.
    [8] BREW K, NAGASE H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity[J]. Biochim Biophys Acta, 2010, 1803(1): 55-71. DOI: 10.1016/j.bbamcr.2010.01.003.
    [9] KNÄUPER V, BAILEY L, WORLEY JR, et al. Cellular activation of proMMP-13 by MT1-MMP depends on the C-terminal domain of MMP-13[J]. FEBS Lett, 2002, 532(1-2): 127-130. DOI: 10.1016/s0014-5793(02)03654-2.
    [10] BOURBOULIA D, STETLER-STEVENSON WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion[J]. Semin Cancer Biol, 2010, 20(3): 161-168. DOI: 10.1016/j.semcancer.2010.05.002.
    [11] ONOZUKA I, KAKINUMA S, KAMIYA A, et al. Cholestatic liver fibrosis and toxin-induced fibrosis are exacerbated in matrix metalloproteinase-2 deficient mice[J]. Biochem Biophys Res Commun, 2011, 406(1): 134-140. DOI: 10.1016/j.bbrc.2011.02.012.
    [12] KOSSAKOWSKA AE, EDWARDS DR, LEE SS, et al. Altered balance between matrix metalloproteinases and their inhibitors in experimental biliary fibrosis[J]. Am J Pathol, 1998, 153(6): 1895-1902. DOI: 10.1016/S0002-9440(10)65703-3.
    [13] ROEB E, PURUCKER E, BREUER B, et al. TIMP expression in toxic and cholestatic liver injury in rat[J]. J Hepatol, 1997, 27(3): 535-544. DOI: 10.1016/s0168-8278(97)80359-5.
    [14] MASHAYEKHI F, SABERI A, MASHAYEKHI S. Serum TIMP1 and TIMP2 concentration in patients with different grades of meningioma[J]. Clin Neurol Neurosurg, 2018, 170: 84-87. DOI: 10.1016/j.clineuro.2018.05.001.
    [15] KUNZ P, SÄHR H, LEHNER B, et al. Elevated ratio of MMP2/MMP9 activity is associated with poor response to chemotherapy in osteosarcoma[J]. BMC Cancer, 2016, 16: 223. DOI: 10.1186/s12885-016-2266-5.
    [16] XU F, LIU C, ZHOU D, et al. TGFβ/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167. DOI: 10.1369/0022155415627681.
    [17] SUN H, FENG J, TANG L. Function of TREM1 and TREM2 in liver-related diseases[J]. Cells, 2020, 9(12): 2626. DOI: 10.3390/cells9122626.
    [18] HASSAN MH, GHOBARA MM. Antifibrotic effect of meloxicam in rat liver: Role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress[J]. Naunyn Schmiedebergs Arch Pharmacol, 2016, 389(9): 971-983. DOI: 10.1007/s00210-016-1263-1.
    [19] KARIMI J, MOHAMMADALIPOUR A, SHEIKH N, et al. Protective effects of combined Losartan and Nilotinib on carbon tetrachloride (CCl(4))-induced liver fibrosis in rats[J]. Drug Chem Toxicol, 2020, 43(5): 468-478. DOI: 10.1080/01480545.2018.1504960.
    [20] XIE AZ, LYU C, SHI QL, et al. Research progress on prevention and treatment of liver fibrosis by traditional Chinese medicine[J]. China Med Herald, 2020, 17(17): 34-37.

    谢爱泽, 吕超, 石清兰, 等. 中医药防治肝纤维化机制的研究进展[J]. 中国医药导报, 2020, 17(17): 34-37.
    [21] LI J, XU YL, LUO S, et al. Jiawei Yinchen Sini Decoction on MMP1 and TIMPs in carbon tetrachloride-induced hepatic fibrosis mice[J]. Liaoning J Tradit Chin Med, 2016, 43(6): 1315-1317. DOI: 10.13192/j.issn.1000-1719.2016.06.068.

    李洁, 徐玉莲, 罗书, 等. 加味茵陈四逆汤对实验性肝纤维化小鼠MMP1和TIMPs表达的影响[J]. 辽宁中医杂志, 2016, 43(6): 1315-1317. DOI: 10.13192/j.issn.1000-1719.2016.06.068.
    [22] LI SM, DAI LJ, FENG L. Effects of Xiaoyao San-containing serum on secretion of MMP-1 and TIMP-1 in human hepatic astrocytes[J]. Lishizhen Med Mater Med Res, 2016, 27(9): 2134-2136. DOI: 10.3969/j.issn.1008-0805.2016.09.029.

    李绍民, 代立娟, 冯澜. 逍遥散含药血清对人肝星形细胞分泌MMP-1和TIMP-1的影响[J]. 时珍国医国药, 2016, 27(9): 2134-2136. DOI: 10.3969/j.issn.1008-0805.2016.09.029.
    [23] TIAN XH, WANG Q, SHANG LZ. Role and correlation study of Chaihu Shugan powder on signal pathway of TGF-beta 1/p38MAPK in rat hepatic fibrosis[J]. Chin J Basic Med Tradit Chin Med, 2016, 22(1): 62-65.

    田新红, 王琦, 尚立芝. 柴胡疏肝散对肝纤维化大鼠TGF-β1/p38MAPK信号通路的作用及相关性研究[J]. 中国中医基础医学杂志, 2016, 22(1): 62-65.
    [24] AL-OLAYAN EM, EL-KHADRAGY MF, ALAJMI RA, et al. Ceratonia siliqua pod extract ameliorates Schistosoma mansoni-induced liver fibrosis and oxidative stress[J]. BMC Complement Altern Med, 2016, 16(1): 434. DOI: 10.1186/s12906-016-1389-1.
    [25] WEN B, SUN HT, HE SQ, et al. Effects of Biejiajian Pill on Wnt signal pathway molecules β-catenin and GSK-3β and down-stream proteins in hepatic stellate cells[J]. China J Tradit Chin Med Pharma, 2017, 32(9): 3997-4000.

    文彬, 孙海涛, 贺松其, 等. 鳖甲煎丸对肝星状细胞中Wnt信号通路信号分子β-catenin、GSK-3β及下游蛋白表达的影响[J]. 中华中医药杂志, 2017, 32(9): 3997-4000.
    [26] HUANG H, KANG Y, HUANG XP, et al. Effect of total flavone from Litchi chinensis Sonn on Smad3, Smad4 and TIMP-1 expression in a rat model of liver fibrosis[J]. World Chin J Dig, 2016, 24(2): 176-186. DOI: 10.11569/wcjd.v24.i2.176.

    黄红, 康毅, 黄旭平, 等. 荔枝核总黄酮对大鼠肝纤维化Smad3、Smad4及TIMP-1信号表达的影响[J]. 世界华人消化杂志, 2016, 24(2): 176-186. DOI: 10.11569/wcjd.v24.i2.176.
    [27] ZHAN YY, TIAN LP, WANG JH, et al. Effect of extract of seed melon on the hepatic expressions of cytokines in mice with hepatic fibrosis[J]. J Shihezi Univ Nat Sci, 2016, 34(6): 739-745. DOI: 10.13880/j.cnki.65-1174/n.2016.06.014.

    湛园园, 田丽萍, 王金辉, 等. 籽瓜皮提取物对肝纤维化小鼠肝组织细胞因子表达的影响[J]. 石河子大学学报(自然科学版), 2016, 34(6): 739-745. DOI: 10.13880/j.cnki.65-1174/n.2016.06.014.
    [28] AN ZX, HE YL, WANG M. Influence of TGF and MMP in dendrobium nobile polyose on hepatic fibrosis rats[J]. Chin Arch Tradit Chin Med, 2017, 35(3): 530-533. DOI: 10.13193/j.issn.1673-7717.2017.03.004.

    安祯祥, 何远利, 王敏. 金钗石斛多糖对肝纤维化大鼠转化生长因子及基质金属蛋白酶的影响[J]. 中华中医药学刊, 2017, 35(3): 530-533. DOI: 10.13193/j.issn.1673-7717.2017.03.004.
    [29] XIONG S, GAO JR, HU ZL. Effect of Carapax Trionycis in inhibiting activation of rat hepatic stellate cell induced by TGF-β[J]. Chin J Exp Tradit Med Formulae, 2017, 23(19): 155-159. DOI: 10.13422/j.cnki.syfjx.2017190155.

    熊莎, 高建蓉, 胡祖良. 鳖甲提取物对抑制TGF-β诱导的大鼠肝星状细胞活化的影响[J]. 中国实验方剂学杂志, 2017, 23(19): 155-159. DOI: 10.13422/j.cnki.syfjx.2017190155.
    [30] ZHENG YF, ZHANG YJ, GUO H. Effect of flavonoids from (Maxim) on fibrosing nonalcoholic steatohepatitis in mice[J]. China J Mod Med, 2017, 27(14): 28-32. DOI: 10.3969/j.issn.1005-8982.2017.14.006.

    郑玉峰, 张英剑, 郭虹. 溪黄草黄酮对小鼠非酒精性脂肪肝纤维化的影响及其机制探讨[J]. 中国现代医学杂志, 2017, 27(14): 28-32. DOI: 10.3969/j.issn.1005-8982.2017.14.006.
    [31] ZHANG B, TAN YJ, HUANG QJ, et al. Effects of water extract of Mallotus apelta (Lour. ) Muell. -Arg. root on hepatic stellate cells activation and ECM secretion in rats[J]. China J Tradit Chin Med Pharm, 2019, 34(9): 4287-4290.

    章波, 檀燕君, 黄秋洁, 等. 白背叶根水提物对大鼠肝星状细胞活化及细胞外基质分泌的影响[J]. 中华中医药杂志, 2019, 34(9): 4287-4290.
    [32] CHEN K, XU JW, ZHOU Q, et al. Effects of all-trans retinioc acid on expressions of COL1α2, MMP-2, TIMP-1, and signaling pathway in TGF-β1-simulated rat hepatic stellate cells[J]. J Xi'an Jiaotong Univ Med Sci, 2019, 36(8): 857-861. DOI: 10.7652/jdyxb201706014.

    陈珂, 许君望, 周琦, 等. 全反式维甲酸对TGF-β1刺激的肝星状细胞COL1α2、MMP-2、TIMP-1以及信号通路的影响[J]. 西安交通大学学报(医学版), 2017, 38(6): 857-861. DOI: 10.7652/jdyxb201706014.
    [33] DONG ZC, GAO Q, MAO JN. The regulatory effect of bilobalide on hepatic fibrosis of nonalcoholic steatohepatitis rat via TLR4/TAK1/NF-κB signaling pathway[J]. J Shenyang Pharm Univ, 2019, 36(8): 716-722. DOI: 10.14066/j.cnki.cn21-1349/r.2019.08.012.

    董志超, 高琦, 毛建娜. 白果内酯通过TLR4/TAK1/NF-κB通路对非酒精性脂肪肝炎大鼠模型肝纤维化的调控作用[J]. 沈阳药科大学学报, 2019, 36(8): 716-722. DOI: 10.14066/j.cnki.cn21-1349/r.2019.08.012.
    [34] GUO L, LI HZ, WEI YJ. Protective effect of ferulic acid on hepatocytes in rat liver fibrosis and its potential mechanism[J]. J Clin Exp Med, 2019, 18(4): 357-361. DOI: 10.3969/j.issn.1671-4695.2019.04.006.

    郭玲, 李惠珍, 魏亚君. 阿魏酸对大鼠肝纤维化过程中肝细胞的保护作用及其可能机制[J]. 临床和实验医学杂志, 2019, 18(4): 357-361. DOI: 10.3969/j.issn.1671-4695.2019.04.006.
    [35] TANG AC, WEI YF, LIU XH. Protective effect and mechanism of tadehaginoside on hepatic fibrosis model mice induced by carbon tetrachloride[J]. China Pharm, 2020, 31(2): 190-195. DOI: 10.6039/j.issn.1001-0408.2020.02.12.

    唐爱存, 韦燕飞, 刘喜华. 葫芦茶苷对四氯化碳致肝纤维化模型小鼠的保护作用及机制研究[J]. 中国药房, 2020, 31(2): 190-195. DOI: 10.6039/j.issn.1001-0408.2020.02.12.
    [36] ABU-ELSAAD NM, ELKASHEF WF. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells[J]. Can J Physiol Pharmacol, 2016, 94(5): 554-562. DOI: 10.1139/cjpp-2015-0284.
    [37] BINGÜL İ, BAŞARAN-KÜÇÜKGERGIN C, AYD1N AF, et al. Betaine treatment decreased oxidative stress, inflammation, and stellate cell activation in rats with alcoholic liver fibrosis[J]. Environ Toxicol Pharmacol, 2016, 45: 170-178. DOI: 10.1016/j.etap.2016.05.033.
    [38] CLICHICI S, OLTEANU D, FILIP A, et al. Beneficial effects of silymarin after the discontinuation of CCl4-induced liver fibrosis[J]. J Med Food, 2016, 19(8): 789-797. DOI: 10.1089/jmf.2015.0104.
    [39] THIRUPATHI A, SILVEIRA PC, NESI RT, et al. β-Amyrin, a pentacyclic triterpene, exhibits anti-fibrotic, anti-inflammatory, and anti-apoptotic effects on dimethyl nitrosamine-induced hepatic fibrosis in male rats[J]. Hum Exp Toxicol, 2017, 36(2): 113-122. DOI: 10.1177/0960327116638727.
    [40] MORTEZAEE K, MAJIDPOOR J, DANESHI E, et al. Post-treatment of melatonin with CCl(4) better reduces fibrogenic and oxidative changes in liver than melatonin co-treatment[J]. J Cell Biochem, 2018, 119(2): 1716-1725. DOI: 10.1002/jcb.26331.
    [41] LIN LB, QUE RY, LIU JK. Effect of saikosaponin-d on expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in activated HSC-T6 cells: Underlying mechanism[J]. World Chin J Dig, 2016, 24(8): 1159-1165. DOI: 10.11569/wcjd.v24.i8.1159.

    林柳兵, 阙任烨, 刘进锴. 柴胡皂苷d对活化的HSC-T6细胞MMP-1、TIMP-1表达的影响及其分子机制[J]. 世界华人消化杂志, 2016, 24(8): 1159-1165. DOI: 10.11569/wcjd.v24.i8.1159.
    [42] QUE R, SHEN Y, REN J, et al. Estrogen receptor-β-dependent effects of saikosaponind on the suppression of oxidative stress-induced rat hepatic stellate cell activation[J]. Int J Mol Med, 2018, 41(3): 1357-1364. DOI: 10.3892/ijmm.2017.3349.
    [43] SADEK KM, SALEH EA, NASR SM. Molecular hepatoprotective effects of lipoic acid against carbon tetrachloride-induced liver fibrosis in rats: Hepatoprotection at molecular level[J]. Hum Exp Toxicol, 2018, 37(2): 142-154. DOI: 10.1177/0960327117693066.
    [44] SALAMA SM, IBRAHIM I, SHAHZAD N, et al. Hepatoprotectivity of Panduratin A against liver damage: In vivo demonstration with a rat model of cirrhosis induced by thioacetamide[J]. APMIS, 2018, 126(9): 710-721. DOI: 10.1111/apm.12878.
    [45] LIU X, HUANG K, NIU Z, et al. Protective effect of isochlorogenic acid B on liver fibrosis in non-alcoholic steatohepatitis of mice[J]. Basic Clin Pharmacol Toxicol, 2019, 124(2): 144-153. DOI: 10.1111/bcpt.13122.
    [46] ZHOU X, YU L, ZHOU M, et al. Dihydromyricetin ameliorates liver fibrosis via inhibition of hepatic stellate cells by inducing autophagy and natural killer cell-mediated killing effect[J]. Nutr Metab (Lond), 2021, 18(1): 64. DOI: 10.1186/s12986-021-00589-6.
    [47] CAI WM. Some problems in anti-fibrotic therapies[J]. J Clin Hepatol, 2011, 27(3): 225-232. DOI: 10.3969/j.issn.1001-5256.2011.03.001.

    蔡为民. 抗肝纤维化治疗研究的若干问题[J]. 临床肝胆病杂志, 2011, 27(3): 225-232. DOI: 10.3969/j.issn.1001-5256.2011.03.001.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  812
  • HTML全文浏览量:  135
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 录用日期:  2021-11-16
  • 出版日期:  2022-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回