中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核苷酸结合寡聚化结构域样受体蛋白3炎性小体在肝脏疾病中的作用机制

杨燕 葛斐林 黄倩 张馨月 曾锐 肖小河 柏兆方 孙琴

引用本文:
Citation:

核苷酸结合寡聚化结构域样受体蛋白3炎性小体在肝脏疾病中的作用机制

DOI: 10.3969/j.issn.1001-5256.2022.04.041
基金项目: 

国家自然科学基金项目 (8193000309);

四川省科学技术厅项目 (2021YFH0150);

四川省中医药管理局项目 (2017C012)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:杨燕、葛斐林负责起草文章;黄倩、张馨月、曾锐负责收集资料;肖小河、柏兆方、孙琴负责拟定写作思路,修改文章关键内容并最后定稿。
详细信息
    通信作者:

    柏兆方,baizf2008@hotmail.com

    孙琴,zxyjhsq@swmu.edu.cn

    杨燕、葛斐林对本文贡献等同,同为第一作者

Mechanism of action of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in liver diseases

Research funding: 

National Natural Science Foundation of China (8193000309);

Sichuan Provincial Department of Science and Technology Project (2021YFH0150);

Sichuan Administration of Traditional Chinese Medicine Project (2017C012)

More Information
  • 摘要: 炎症小体在肝脏的天然免疫中发挥着重要作用,然而炎症小体的过度活化能够导致肝脏的炎症损伤,其中NLRP3炎症小体的损伤机制研究最为清楚。研究表明,多种肝脏疾病的发生可能均与炎症小体(尤其NLRP3炎症小体)的过度活化有关。本文将分别从炎症小体、NLRP3炎症小体的活化机制及其在不同肝脏疾病中的作用机制进行综述,以期从NLRP3炎症小体角度,为肝脏疾病的治疗靶点提供参考。

     

  • 图  1  NLRP3炎症小体的活化机制示意图

    Figure  1.  Activation mechanism of NLRP3 inflammasome

    表  1  NLRP3炎症小体在肝脏疾病中的作用机制小结

    Table  1.   Summary of the mechanism of NLRP3 inflammasome in liver diseases

    肝脏疾病 活化细胞 NLRP3炎症小体在脏病中的机制 参考文献
    病毒性肝病(以HBV为代表) 单核巨噬细胞、肝实质细胞 HBX蛋白通过激活NLRP3炎症小体,促进氧化应激而导致肝细胞炎症损伤;HBeAg通过抑制NF-κB通路和ROS的产生,从而抑制NLRP3炎症小体免疫耐受 17-18
    ALD 单核巨噬细胞 暴露于酒精的肝脏单核巨噬细胞通过激活NLRP3炎症小体而促进IL-1β的释放,进而募集更多的自然杀伤T淋巴细胞、中性粒细胞;此外,还能通过焦亡影响ALD 21-24
    NAFLD M1型巨噬细胞 通过AMPK/NLRP3/HMGB-1信号通路而缓解IR; IL-18可通过调节内质网应激,减轻肝细胞坏死或凋亡 27-2934-34
    肝纤维化 肝星状细胞、M2型巨噬细胞 肝星状细胞和巨噬细胞通过激活NLRP3小体,释放大量的致炎因子(IL-1β),从而刺激肝星状细胞的活化和不断增殖 35-37
    肝癌 纤维细胞、T淋巴细胞、单核巨噬细胞 IL-1、IL-18等炎症因子促进肿瘤转移基因和生长因子的表达,进而促进肿瘤细胞的黏附和转移;适量的IL-1、IL-18可能促进肿瘤细胞的凋亡进而抑制肿瘤 38-41
    DILI 单核巨噬细胞、中性粒细胞 药物对细胞造成损伤而释放损伤相关分子模式(如ROS),从而促进单核巨噬细胞、中性粒细胞中NLRP3炎症小体的活化,IL-1β释放增多,从而引起肝脏的炎症损伤 43-44
    下载: 导出CSV
  • [1] TAKEUCHI O, AKIRA S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820. DOI: 10.1016/j.cell.2010.01.022.
    [2] STOREK KM, MONACK DM. Bacterial recognition pathways that lead to inflammasome activation[J]. Immunol Rev, 2015, 265(1): 112-129. DOI: 10.1111/imr.12289.
    [3] LUAN J, JU D. Inflammasome: A double-edged sword in liver diseases[J]. Front Immunol, 2018, 9: 2201. DOI: 10.3389/fimmu.2018.02201.
    [4] HE Y, HARA H, NÚÑEZ G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021. DOI: 10.1016/j.tibs.2016.09.002.
    [5] MALTEZ VI, TUBBS AL, COOK KD, et al. Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium[J]. Immunity, 2015, 43(5): 987-997. DOI: 10.1016/j.immuni.2015.10.010.
    [6] HENAO-MEJIA J, ELINAV E, JIN C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature, 2012, 482(7384): 179-185. DOI: 10.1038/nature10809.
    [7] HAGA H, YAN IK, BORRELLI DA, et al. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury[J]. Liver Transpl, 2017, 23(6): 791-803. DOI: 10.1002/lt.24770.
    [8] SUN Q, LOUGHRAN P, SHAPIRO R, et al. Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice[J]. Hepatology, 2017, 65(1): 253-268. DOI: 10.1002/hep.28893.
    [9] SINGH S, JHA S. NLRs as Helpline in the Brain: mechanisms and therapeutic implications[J]. Mol Neurobiol, 2018, 55(10): 8154-8178. DOI: 10.1007/s12035-018-0957-4.
    [10] ELLIOTT EI, SUTTERWALA FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly[J]. Immunol Rev, 2015, 265(1): 35-52. DOI: 10.1111/imr.12286.
    [11] EVAVOLD CL, RUAN J, TAN Y, et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages[J]. Immunity, 2018, 48(1): 35-44. e6. DOI: 10.1016/j.immuni.2017.11.013.
    [12] MCRAE S, IQBAL J, SARKAR-DUTTA M, et al. The hepatitis C virus-induced NLRP3 inflammasome activates the sterol regulatory element-binding protein (SREBP) and regulates lipid metabolism[J]. J Biol Chem, 2016, 291(7): 3254-3267. DOI: 10.1074/jbc.M115.694059.
    [13] Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 386(9995): 743-800. DOI: 10.1016/S0140-6736(15)60692-4.
    [14] JIA Y, MA L, WANG Y, et al. NLRP3 inflammasome and related cytokines reflect the immune status of patients with HBV-ACLF[J]. Mol Immunol, 2020, 120: 179-186. DOI: 10.1016/j.molimm.2020.01.011.
    [15] TERRAULT NA, LOK A, MCMAHON BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance[J]. Hepatology, 2018, 67(4): 1560-1599. DOI: 10.1002/hep.29800.
    [16] XIE WH, DING J, XIE XX, et al. Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation[J]. Inflamm Res, 2020, 69(7): 683-696. DOI: 10.1007/s00011-020-01351-z.
    [17] MOLYVDAS A, GEORGOPOULOU U, LAZARIDIS N, et al. The role of the NLRP3 inflammasome and the activation of IL-1β in the pathogenesis of chronic viral hepatic inflammation[J]. Cytokine, 2018, 110: 389-396. DOI: 10.1016/j.cyto.2018.04.032.
    [18] YU X, LAN P, HOU X, et al. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production[J]. J Hepatol, 2017, 66(4): 693-702. DOI: 10.1016/j.jhep.2016.12.018.
    [19] CHEN H, HE G, CHEN Y, et al. Differential activation of NLRP3, AIM2, and IFI16 inflammasomes in humans with acute and chronic hepatitis B[J]. Viral Immunol, 2018, 31(9): 639-645. DOI: 10.1089/vim.2018.0058.
    [20] GAO B, BATALLER R. Alcoholic liver disease: Pathogenesis and new therapeutic targets[J]. Gastroenterology, 2011, 141(5): 1572-1585. DOI: 10.1053/j.gastro.2011.09.002.
    [21] PETRASEK J, BALA S, CSAK T, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice[J]. J Clin Invest, 2012, 122(10): 3476-3489. DOI: 10.1172/JCI60777.
    [22] CUI K, YAN G, XU C, et al. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice[J]. J Hepatol, 2015, 62(6): 1311-1318. DOI: 10.1016/j.jhep.2014.12.027.
    [23] WREE A, EGUCHI A, MCGEOUGH MD, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice[J]. Hepatology, 2014, 59(3): 898-910. DOI: 10.1002/hep.26592.
    [24] KHANOVA E, WU R, WANG W, et al. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients[J]. Hepatology, 2018, 67(5): 1737-1753. DOI: 10.1002/hep.29645.
    [25] SUZUKI A, DIEHL AM. Nonalcoholic steatohepatitis[J]. Annu Rev Med, 2017, 68: 85-98. DOI: 10.1146/annurev-med-051215-031109.
    [26] MARRA F, SVEGLIATI-BARONI G. Lipotoxicity and the gut-liver axis in NASH pathogenesis[J]. J Hepatol, 2018, 68(2): 280-295. DOI: 10.1016/j.jhep.2017.11.014.
    [27] JINDAL A, BRUZZÌ S, SUTTI S, et al. Fat-laden macrophages modulate lobular inflammation in nonalcoholic steatohepatitis (NASH)[J]. Exp Mol Pathol, 2015, 99(1): 155-162. DOI: 10.1016/j.yexmp.2015.06.015.
    [28] PIERANTONELLI I, RYCHLICKI C, AGOSTINELLI L, et al. Lack of NLRP3-inflammasome leads to gut-liver axis derangement, gut dysbiosis and a worsened phenotype in a mouse model of NAFLD[J]. Sci Rep, 2017, 7(1): 12200. DOI: 10.1038/s41598-017-11744-6.
    [29] QI Y, DU X, YAO X, et al. Vildagliptin inhibits high free fatty acid (FFA)-induced NLRP3 inflammasome activation in endothelial cells[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1067-1074. DOI: 10.1080/21691401.2019.1578783.
    [30] XU B, JIANG M, CHU Y, et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice[J]. J Hepatol, 2018, 68(4): 773-782. DOI: 10.1016/j.jhep.2017.11.040.
    [31] ROSSATO M, DI VINCENZO A, PAGANO C, et al. The P2X7 Receptor and NLRP3 axis in non-alcoholic fatty liver disease: A brief review[J]. Cells, 2020, 9(4): 1047. DOI: 10.3390/cells9041047.
    [32] BAEZA-RAJA B, GOODYEAR A, LIU X, et al. Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis[J]. PLoS One, 2020, 15(6): e0234038. DOI: 10.1371/journal.pone.0234038.
    [33] WU M. Study on the mechanism of paclitaxel based on NLRP3 inflammasome in regulation of non-alcoholic fatty liver disease under acute alcohol stimulation[D]. Yanji: Yanbian University, 2020.

    吴梅. 紫杉叶素基于NLRP3炎症小体调控急性酒精刺激下的非酒精性脂肪肝的机制研究[D]. 延吉: 延边大学, 2020.
    [34] HAN CY, RHO HS, KIM A, et al. FXR Inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury[J]. Cell Rep, 2018, 24(11): 2985-2999. DOI: 10.1016/j.celrep.2018.07.068.
    [35] MANDREKAR P, AMBADE A, LIM A, et al. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice[J]. Hepatology, 2011, 54(6): 2185-2197. DOI: 10.1002/hep.24599.
    [36] ROBERT S, GICQUEL T, BODIN A, et al. Characterization of the MMP/TIMP imbalance and collagen production induced by IL-1β or TNF-α release from human hepatic stellate cells[J]. PLoS One, 2016, 11(4): e0153118. DOI: 10.1371/journal.pone.0153118.
    [37] PÉREZ-CABEZA DE VACA R, DOMÍNGUEZ-LÓPEZ M, GUERRERO-CELIS N, et al. Inflammation is regulated by the adenosine derivative molecule, IFC-305, during reversion of cirrhosis in a CCl4 rat model[J]. Int Immunopharmacol, 2018, 54: 12-23. DOI: 10.1016/j.intimp.2017.10.019.
    [38] KOLB R, LIU GH, JANOWSKI AM, et al. Inflammasomes in cancer: A double-edged sword[J]. Protein Cell, 2014, 5(1): 12-20. DOI: 10.1007/s13238-013-0001-4.
    [39] ERSHAID N, SHARON Y, DORON H, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis[J]. Nat Commun, 2019, 10(1): 4375. DOI: 10.1038/s41467-019-12370-8.
    [40] HAMARSHEH S, ZEISER R. NLRP3 inflammasome activation in cancer: A double-edged sword[J]. Front Immunol, 2020, 11: 1444. DOI: 10.3389/fimmu.2020.01444.
    [41] KARKI R, MAN SM, KANNEGANTI TD. Inflammasomes and cancer[J]. Cancer Immunol Res, 2017, 5(2): 94-99. DOI: 10.1158/2326-6066.CIR-16-0269.
    [42] YUAN Z, HASNAT M, LIANG P, et al. The role of inflammasome activation in Triptolide-induced acute liver toxicity[J]. Int Immunopharmacol, 2019, 75: 105754. DOI: 10.1016/j.intimp.2019.105754.
    [43] WANG Z, XU G, ZHAN X, et al. Carbamazepine promotes specific stimuli-induced NLRP3 inflammasome activation and causes idiosyncratic liver injury in mice[J]. Arch Toxicol, 2019, 93(12): 3585-3599. DOI: 10.1007/s00204-019-02606-3.
    [44] GAO Y, XU G, MA L, et al. Icariside I specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity[J]. Cell Commun Signal, 2021, 19(1): 13. DOI: 10.1186/s12964-020-00647-1.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  146
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 录用日期:  2021-09-26
  • 出版日期:  2022-04-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回