中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝癌细胞来源外泌体对肿瘤相关M2型巨噬细胞极化的影响

姚涛 徐植红 姚纪友 夏雨 陆敏强 兰天 刘冰

引用本文:
Citation:

肝癌细胞来源外泌体对肿瘤相关M2型巨噬细胞极化的影响

DOI: 10.3969/j.issn.1001-5256.2022.03.013
基金项目: 

药物早期毒性评价创新团队 (2018KCXTD016);

广州市科技计划项目 (202002030387)

利益冲突声明:本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。
作者贡献声明:姚涛、徐值红参与课题设计,资料分析,撰写论文;姚纪友、夏雨参与收集数据,修改论文;刘冰、兰天、陆敏强负责课题设计,数据资料分析,指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘冰,liubing52000@163.com

Effect of hepatocellular carcinoma cell-derived exosomes on M2 polarization of tumor-associated macrophages

Research funding: 

Innovation Team of Early Drug Toxicity Evaluation (2018KCXTD016);

Guangzhou Science and Technology Program (202002030387)

More Information
  • 摘要:   目的  探讨来源于肝癌细胞的外泌体对肿瘤相关巨噬细胞极化的影响,揭示肝癌形成新机制。  方法  通过超速离心法分离肝癌细胞来源外泌体,透射电子显微镜、动态光散射粒度分析仪、蛋白免疫印迹法对外泌体表征进行鉴定;诱导巨噬细胞极化模型,实时荧光定量PCR和蛋白免疫印迹法验证其极化状态。符合正态分布的计量资料两组间比较采用t检验;多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。  结果  透谢电子显微镜显示肝癌细胞来源外泌体为圆形或椭圆形囊泡结构,外泌体粒径大小为(172.65±2.34)nm,蛋白免疫印迹分析显示肝癌细胞来源的外泌体中标志蛋白TSG101和CD63呈高阳性表达。佛波酯15 ng诱导人源单核细胞巨噬细胞24 h贴壁后CD68表达显著增加(6.67±0.98 vs 1.00±0.25,t=11.20,P<0.001)。蛋白免疫印迹分析显示,相比对照组(L02来源外泌体组),HCC细胞来源外泌体(低、中、高3种剂量)诱导巨噬细胞表达M2型巨噬细胞标志物Arg-1、CD163均明显增加(P值均<0.05)。  结论  肝癌细胞来源外泌体可促进巨噬细胞M2型极化。

     

  • 图  1  TEM下Hep G2和L02来源外泌体的形态特征

    注:a,Hep G2-Exo;b,L02-Exo。

    图  2  外泌体粒径分布图

    图  3  蛋白免疫印迹法鉴定外泌体标志分子蛋白表达情况

    注:EDS,超速离心分离外泌体后的上层液体。

    图  4  蛋白免疫印迹法检测M2型巨噬细胞标志蛋白Arg-1、CD163表达

  • [1] CHEN R, XU X, TAO Y, et al. Exosomes in hepatocellular carcinoma: A new horizon[J]. Cell Commun Signal, 2019, 17(1): 1. DOI: 10.1186/s12964-018-0315-1.
    [2] VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462. DOI: 10.1056/NEJMra1713263.
    [3] ROCHE B, COILLY A, DUCLOS-VALLEE JC, et al. The impact of treatment of hepatitis C with DAAs on the occurrence of HCC[J]. Liver Int, 2018, 38(Suppl 1): 139-145. DOI: 10.1111/liv.13659.
    [4] WU Y, ZHANG J, ZHANG X, et al. Cancer stem cells: A potential breakthrough in HCC-targeted therapy[J]. Front Pharmacol, 2020, 11: 198. DOI: 10.3389/fphar.2020.00198.
    [5] TACKE F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol, 2017, 66(6): 1300-1312. DOI: 10.1016/j.jhep.2017.02.026.
    [6] WU J, GAO W, TANG Q, et al. M2 macrophage-derived exosomes facilitate HCC metastasis by transferring α(M) β(2) integrin to tumor cells[J]. Hepatology, 2021, 73(4): 1365-1380. DOI: 10.1002/hep.31432.
    [7] LI W, NG JM, WONG CC, et al. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer[J]. Oncogene, 2018, 37(36): 4903-4920. DOI: 10.1038/s41388-018-0341-x.
    [8] NGAMBENJAWONG C, GUSTAFSON HH, PUN SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics[J]. Adv Drug Deliv Rev, 2017, 114: 206-221. DOI: 10.1016/j.addr.2017.04.010.
    [9] HINSHAW DC, SHEVDE LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566. DOI: 10.1158/0008-5472.CAN-18-3962.
    [10] PEGTEL DM, GOULD SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514. DOI: 10.1146/annurev-biochem-013118-111902.
    [11] HARDING C, HEUSER J, STAHL P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes[J]. J Cell Biol, 1983, 97(2): 329-339. DOI: 10.1083/jcb.97.2.329.
    [12] PAN BT, JOHNSTONE RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978. DOI: 10.1016/0092-8674(83)90040-5.
    [13] PURUSHOTHAMAN A, BANDARI SK, LIU J, et al. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions[J]. J Biol Chem, 2016, 291(4): 1652-1663. DOI: 10.1074/jbc.M115.686295.
    [14] WANG F, LI L, PIONTEK K, et al. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma[J]. Hepatology, 2018, 67(3): 940-954. DOI: 10.1002/hep.29586.
    [15] QIAN M, WANG S, GUO X, et al. Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways[J]. Oncogene, 2020, 39(2): 428-442. DOI: 10.1038/s41388-019-0996-y.
    [16] LI QF, XIA T, SHI CW, et al. Effects of exosomes secreted by hepatocellular carcinoma cells under hypoxic environment on homologous cell activity[J]. Chin J Gerontol, 2022, 42(3): 672-675.

    李全富, 夏天, 石春薇, 等. 肝癌细胞低氧环境下分泌的外泌体对同源细胞活性的影响[J]. 中国老年学杂志, 2022, 42(3): 672-675.
    [17] ZHAO S, MI Y, GUAN B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol, 2020, 13(1): 156. DOI: 10.1186/s13045-020-00991-2.
    [18] FANG T, LV H, LV G, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer[J]. Nat Commun, 2018, 9(1): 191. DOI: 10.1038/s41467-017-02583-0.
    [19] LOU G, CHEN Z, ZHENG M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases[J]. Exp Mol Med, 2017, 49(6): e346. DOI: 10.1038/emm.2017.63.
    [20] GANDHAM S, SU X, WOOD J, et al. Technologies and standardization in research on extracellular vesicles[J]. Trends Biotechnol, 2020, 38(10): 1066-1098. DOI: 10.1016/j.tibtech.2020.05.012.
    [21] TI D, HAO H, TONG C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308. DOI: 10.1186/s12967-015-0642-6.
  • 加载中
图(4)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  244
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 录用日期:  2021-09-10
  • 出版日期:  2022-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回