中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝移植术后早期并发症风险预测模型的建立与评价

代星 高犇 张欣欣 孙岩岩 蒋文涛 李江

引用本文:
Citation:

肝移植术后早期并发症风险预测模型的建立与评价

DOI: 10.3969/j.issn.1001-5256.2022.02.027
基金项目: 

国家自然科学基金面上项目 (81870444);

天津市自然科学基金 (17JCQNJC12800)

利益冲突声明:本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突,特此声明。
作者贡献声明:代星负责课题设计,撰写论文;高犇、张欣欣、孙岩岩负责收集数据,资料分析;蒋文涛、李江负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    李江,lijiang_009@163.com

Establishment and validation of a risk prediction model for early-stage complications after liver transplantation

Research funding: 

General Project of National Natural Science Foundation of China (81870444);

Natural Science Foundation of Tianjin (17JCQNJC12800)

More Information
  • 摘要:   目的  探讨影响肝移植受者术后早期并发症发生的危险因素,建立并验证肝移植术后早期并发症风险预测模型。  方法  回顾性收集2016年1月—2018年12月于天津市第一中心医院肝移植科接受原位肝移植234例患者的临床资料。根据肝移植术后是否发生Clavien-Dindo 3级以上并发症,将所有患者分为并发症组(n=97)和无并发症组(n=137),比较2组年龄、性别、BMI、血型、腰大肌厚度/身高值(PMTH)、控制营养状态(CONUT)评分、MELD评分、血清总胆红素、血肌酐、凝血酶原时间国际标准化比值(PT-INR)、血尿素氮、血红蛋白、白细胞计数、血小板计数、术中输注红细胞量、输注冰冻血浆量、失血量、无肝期、手术时间以及供体年龄、BMI、供肝冷缺血时间和供肝热缺血时间等指标。符合正态分布的计量资料2组间比较采用独立样本t检验,非正态分布的计量资料2组间比较采用Mann-Whitney U检验,计数资料2组间比较采用χ2检验。采用单因素分析和二元logistic回归分析法分析肝移植术后早期并发症发生的危险因素,根据Framingham研究中心提供的logistic模型建立积分系统的方法建立肝移植术后并发症风险预测模型。采用一致性指数、受试者工作特征(ROC)曲线、模型校准曲线、Hosmer-Lemeshow检验对模型进行内部验证;采用决策曲线评价模型临床实用性。采用Kaplan-Meier法比较不同风险评分组患者肝移植术后早期并发症发生率。  结果  并发症组患者MELD评分、低PMTH比例、血清总胆红素、血肌酐、血尿素氮、CONUT评分、术中输注红细胞量、术中输注冰冻血浆量均明显高于无并发症组,血红蛋白水平明显低于无并发症组(P值均<0.1)。二元logistc多因素分析结果显示,MELD评分、PMTH、CONUT评分是肝移植术后早期3级以上并发症发生的独立危险因素(OR分别为1.104、2.858、1.481,95%CI分别为1.057~1.154、1.451~5.626、1.287~1.703,P值均<0.05)。将MELD评分、PMTH、CONUT评分纳入预测模型,该预测模型最高分为24分,一致性指数为0.828,ROC曲线下面积为0.812,P<0.001,敏感度为0.792,特异度为0.751,表明该预测模型具有良好的区分度;该预测模型校正曲线接近参考曲线,Hosmer-Lemeshow检验表明该预测模型具有良好的拟合度(χ2=8.525,P=0.382);决策曲线显示大部分患者均能从预测模型中获益,且净获益率较高,表明该预测模型具有良好的临床实用性。根据最佳约登指数0.507,选择11分为截点值,将所有患者分为低风险组(<8分,n=55)、中风险组(8~10分,n=63)、高风险组(11~14分,n=67)、极高风险组(≥15分,n=49),4组术后90 d累积并发症发生率分别为3.6%、28.6%、59.7%、75.5%,并发症发生率随着风险评分的上升而递增(P<0.001)。  结论  MELD评分、PMTH、CONUT评分是肝移植术后早期3级以上并发症发生的独立危险因素,以此建立的风险预测模型对高风险患者具有较高的预测价值。

     

  • 图  1  CT测量脐平面右侧腰大肌轴向和横向厚度

    注:腰大肌横向厚度(黑色箭头)垂直于腰大肌轴向厚度(黄色箭头)。

    图  2  肝移植术后早期并发症风险预测模型ROC曲线

    图  3  预测模型校正曲线

    注:Bootstrap法抽样1000次,平均绝对误差=0.044,n=234。

    图  4  预测模型决策曲线

    图  5  肝移植术后早期并发症发生率Kaplan-Meier曲线

    表  1  肝移植术后早期并发症危险因素单因素分析

    指标 并发症组(n=97) 无并发症组(n=137) 统计值 P
    受者信息
      年龄(岁) 50±9 49±10 t=0.780 0.354
      性别[例(%)] χ2=0.070 0.791
        男 73(75) 101(74)
        女 24(25) 36(26)
      BMI (kg/m2) 24.0(21.7~27.0) 23.5(21.2~26.0) Z=-0.944 0.345
      血型不相容[例(%)] 5(5.2) 8(5.8) χ2=0.051 1.000
      MELD评分 20(16~24) 13(10~20) Z=5.499 <0.001
      PMTH[例(%)] χ2=14.381 <0.001
        低 44(45) 30(22)
        高 53(55) 107(78)
      血清总胆红素(μmol/L) 123.0(72.1~379.2) 29.9(18.0~115.6) Z=6.792 <0.001
      血肌酐(μmol/L) 68.0(51.0~118.5) 61.0(50.0~69.5) Z=2.371 0.018
      PT-INR 1.50(1.18~2.03) 1.45(1.19~1.97) Z=0.228 0.820
      血尿素氮(mmol/L) 5.3(3.7~11.8) 4.7(3.5~5.8) Z=2.560 0.010
      血红蛋白(g/L) 100±25 107±29 t=-2.097 0.044
      白细胞计数(×109/L) 4.9(3.4~6.8) 4.6(3.1~6.8) Z=0.985 0.324
      血小板计数(×109/L) 93(47~152) 117(54~170) Z=-1.441 0.150
      ConUT评分(分) 7(6~8) 5(3~7) Z=6.308 0.004
    手术情况
      术中输注红细胞量(U) 10(8~12) 8(6~10) Z=2.456 0.014
      术中输注冰冻血浆量(mL) 2000(1600~2350) 2000(1400~2000) Z=2.171 0.030
      术中失血量(mL) 2000(1500~2450) 1800(1500~2400) Z=1.365 0.172
      无肝期(min) 45(35~50) 45(40~50) Z=-0.051 0.959
      手术时间(h) 8.0±1.6 7.8±1.5 t=1.144 0.200
    供者信息
      年龄(岁) 41±9 42±10 t=-0.904 0.939
      BMI(kg/m2) 24.1(21.4~27.4) 23.8(22.1~26.4) Z=-0.255 0.799
      CIT(h) 7.3(6.4~7.9) 6.8(6.2~7.8) Z=1.138 0.255
      WIT(min) 5.8±1.7 5.7±1.5 t=0.237 0.182
    下载: 导出CSV

    表  2  肝移植术后早期并发症危险因素多因素分析

    危险因素 β P OR 95%CI
    MELD评分 0.099 0.002 1.104 1.057~1.154
    PMTH 1.050 <0.001 2.858 1.451~5.626
    ConUT评分 0.393 <0.001 1.481 1.287~1.703
    下载: 导出CSV

    表  3  肝移植术后早期并发症风险预测模型

    危险因素 得分
    MELD评分
      <10分 0
      10~19分 3
      20~29分 6
      ≥30分 9
    PMTH
      高 0
      低 3
    血清白蛋白
      ≥35.0 g/L 0
      30.0~34.9 g/L 2
      25.0~29.9 g/L 4
      <25.0 g/L 6
    血清总胆固醇
      ≥180 g/L 0
      140~179 g/L 1
      100~139 g/L 2
      <100 g/L 3
    总淋巴细胞计数
      ≥1.60×109/L 0
      1.20×109/L~1.59 ×109/L 1
      0.80×109/L~1.19×109/L 2
      <0.8×109/L 3
    下载: 导出CSV
  • [1] HOU JC, ZHENG H, QIANG Z, et al. Impact of psoas muscle index on early postoperative mortality and complications after liver transplantation[J]. Chin J Surg, 2018, 56(5): 374-378. DOI: 10.3760/cma.j.issn.0529-5815.2018.05.010.

    侯建存, 郑虹, 强喆, 等. 腰大肌指数对肝移植早期预后及并发症的影响[J]. 中华外科杂志, 2018, 56(5): 374-378. DOI: 10.3760/cma.j.issn.0529-5815.2018.05.010.
    [2] SAIMAN Y, SERPER M. Frailty and sarcopenia in patients pre- and post-liver transplant[J]. Clin Liver Dis, 2021, 25(1): 35-51. DOI: 10.1016/j.cld.2020.08.004.
    [3] LEE J, JEONG WK, KIM JH, et al. Serial Observations of muscle and fat mass as prognostic factors for deceased donor liver transplantation[J]. Korean J Radiol, 2021, 22(2): 189-197. DOI: 10.3348/kjr.2019.0750.
    [4] HUGUET A, LATOURNERIE M, DEBRY PH, et al. The psoas muscle transversal diameter predicts mortality in patients with cirrhosis on a waiting list for liver transplantation: A retrospective cohort study[J]. Nutrition, 2018, 51-52: 73-79. DOI: 10.1016/j.nut.2018.01.008.
    [5] IGNACIO de ULÍBARRI J, GONZÁLEZ-MADROÑO A, de VILLAR NG, et al. CONUT: A tool for controlling nutritional status. First validation in a hospital population[J]. Nutr Hosp, 2005, 20(1): 38-45.
    [6] KURODA D, SAWAYAMA H, KURASHIGE J, et al. Controlling Nutritional Status (CONUT) score is a prognostic marker for gastric cancer patients after curative resection[J]. Gastric Cancer, 2018, 21(2): 204-212. DOI: 10.1007/s10120-017-0744-3.
    [7] PRAVISANI R, MOCCHEGIANI F, ISOLA M, et al. Controlling Nutritional Status score does not predict patients' overall survival or hepatocellular carcinoma recurrence after deceased donor liver transplantation[J]. Clin Transplant, 2020, 34(3): e13786. DOI: 10.1111/ctr.13786.
    [8] FUKAMI Y, SAITO T, OSAWA T, et al. Preoperative controlling nutritional status plus tumor burden score for the assessment of prognosis after curative liver resection for hepatocellular carcinoma[J]. Med Princ Pract, 2021, 30(2): 131-137. DOI: 10.1159/000514031.
    [9] DINDO D, DEMARTINES N, CLAVIEN PA. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey[J]. Ann Surg, 2004, 240(2): 205-213. DOI: 10.1097/01.sla.0000133083.54934.ae.
    [10] LYU GY. Risk factors for biliary complications after liver transplantation from donation after cardiac death[J]. J Clin Hepatol, 2015, 31(12): 2027-2030. DOI: 10.3969/j.issn.1001-5256.2015.12.009.

    吕国悦. 心脏死亡供肝受体肝移植术后胆道并发症的危险因素探讨[J]. 临床肝胆病杂志, 2015, 31(12): 2027-2030. DOI: 10.3969/j.issn.1001-5256.2015.12.009.
    [11] SULLIVAN LM, MASSARO JM, SR DRB. Presentation of multivariate data for clinical use: The Framingham Study risk score functions[J]. Stat Med, 2004, 23(10): 1631-1660. DOI: 10.1002/sim.1742.
    [12] Branch of Organ Transplantation of Chinese Medical Association. Diagnosis and treatment specification for postoperative complications after liver transplantation in China (2019 edition)[J]. Organ Transpl, 2021, 12(2): 129-133. DOI: 10.3969/j.issn.1674-7445.2021.02.002.

    中华医学会器官移植学分会. 中国肝移植术后并发症诊疗规范(2019版)[J]. 器官移植, 2021, 12(2): 129-133. DOI: 10.3969/j.issn.1674-7445.2021.02.002.
    [13] Chinese Society of Hepatology, Chinese Medical Association, Chinese Society of Gastroenterology, Chinese Medical Association. Clinical guidelines on nutrition in end-stage liver disease[J]. J Clin Hepatol, 2019, 35(6): 1222-1230. DOI: 10.3969/j.issn.1001-5256.2019.06.010.

    中华医学会肝病学分会, 中华医学会消化病学分会. 终末期肝病临床营养指南[J]. 临床肝胆病杂志, 2019, 35(6): 1222-1230. DOI: 10.3969/j.issn.1001-5256.2019.06.010.
    [14] DOIJ, MORO A, FUJIKI M, et al. Nutrition support in liver transplantation and postoperative recovery: The effects of vitamin D level and vitamin D supplementation in liver transplantation[J]. Nutrients, 2020, 12(12): 3677. DOI: 10.3390/nu12123677.
    [15] TABERNA DJ, NAVAS-CARRETERO S, MARTINEZ JA. Current nutritional status assessment tools for metabolic care and clinical nutrition[J]. Curr Opin Clin Nutr Metab Care, 2019, 22(5): 323-328. DOI: 10.1097/MCO.0000000000000581.
    [16] MARESCHAL J, ACHAMRAH N, NORMAN K, et al. Clinical value of muscle mass assessment in clinical conditions associated with malnutrition[J]. J Clin Med, 2019, 8(7): 1040. DOI: 10.3390/jcm8071040.
    [17] CAMPOS DEL PORTILLO R, PALMA MIILA S, GARCÍA VÁQUEZ N, et al. Assessment of nutritional status in the healthcare setting in Spain[J]. Nutr Hosp, 2015, 31(Suppl 3): 196-208. DOI: 10.3305/nh.2015.31.sup3.8767.
    [18] BORHOFEN SM, GERNER C, LEHMANN J, et al. The royal free hospital-nutritional prioritizing tool is an independent predictor of deterioration of liver function and survival in cirrhosis[J]. Dig Dis Sci, 2016, 61(6): 1735-1743. DOI: 10.1007/s10620-015-4015-z.
    [19] European Association for the Study of the Liver. EASL clinical practice guidelines on nutrition in chronic liver disease[J]. J Hepatol, 2019, 70(1): 172-193. DOI: 10.1016/j.jhep.2018.06.024.
    [20] ENDO K, SATO T, KAKISAKA K, et al. Calf and arm circumference as simple markers for screening sarcopenia in patients with chronic liver disease[J]. Hepatol Res, 2021, 51(2): 176-189. DOI: 10.1111/hepr.13589.
    [21] YAO J, ZHOU X, YUAN L, et al. Prognostic value of the third lumbar skeletal muscle mass index in patients with liver cirrhosis and ascites[J]. Clin Nutr, 2020, 39(6): 1908-1913. DOI: 10.1016/j.clnu.2019.08.006.
    [22] GADDUCCI A, COSIO S. The prognostic relevance of computed tomography-assessed skeletal muscle index and skeletal muscle radiation attenuation in patients with gynecological cancer[J]. Anticancer Res, 2021, 41(1): 9-20. DOI: 10.21873/anticanres.14747.
    [23] MURRAY TÉ, WILLIAMS D, LEE MJ. Osteoporosis, obesity, and sarcopenia on abdominal CT: A review of epidemiology, diagnostic criteria, and management strategies for the reporting radiologist[J]. Abdom Radiol (NY), 2017, 42(9): 2376-2386. DOI: 10.1007/s00261-017-1124-5.
    [24] GU DH, KIM MY, SEO YS, et al. Clinical usefulness of psoas muscle thickness for the diagnosis of sarcopenia in patients with liver cirrhosis[J]. Clin Mol Hepatol, 2018, 24(3): 319-330. DOI: 10.3350/cmh.2017.0077.
    [25] LIGHTFOOT A, MCARDLE A, GRIFFITHS RD. Muscle in defense[J]. Crit Care Med, 2009, 37(10 Suppl): S384-S390. DOI: 10.1097/CCM.0b013e3181b6f8a5.
    [26] NEWSHOLME P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection?[J]. J Nutr, 2001, 131(9 Suppl): 2515S-2522S; discussion 2523S-2524S. DOI: 10.1093/jn/131.9.2515S.
    [27] ROGERI PS, GASPARINI SO, MARTINS GL, et al. Crosstalk between skeletal muscle and immune system: Which roles do IL-6 and glutamine play?[J]. Front Physiol, 2020, 11: 582258. DOI: 10.3389/fphys.2020.582258.
    [28] BATATINHA H, BIONDO LA, LIRA FS, et al. Nutrients, immune system, and exercise: Where will it take us?[J]. Nutrition, 2019, 61: 151-156. DOI: 10.1016/j.nut.2018.09.019.
    [29] OKAZAKI T, SUZUKAMO Y, MIYATAKE M, et al. Respiratory muscle weakness as a risk factor for pneumonia in older people[J]. Gerontology, 2021, 67(5): 581-590. DOI: 10.1159/000514007.
    [30] NARWAL V, DESWAL R, BATRA B, et al. Cholesterol biosensors: A review[J]. Steroids, 2019, 143: 6-17. DOI: 10.1016/j.steroids.2018.12.003.
    [31] HAN S, KIM G, LEE SK, et al. Comparison of the tolerance of hepatic ischemia/reperfusion injury in living donors: Macrosteatosis versus microsteatosis[J]. Liver Transpl, 2014, 20(7): 775-783. DOI: 10.1002/lt.23878.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  141
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 录用日期:  2021-08-31
  • 出版日期:  2022-02-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回