中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竞争性内源RNA在肝细胞癌发生发展中的作用

陈晓昊 邓益斌

引用本文:
Citation:

竞争性内源RNA在肝细胞癌发生发展中的作用

DOI: 10.3969/j.issn.1001-5256.2021.08.039
基金项目: 

广西自然科学基金 (2018GXNSFAA281187)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:陈晓昊负责拟定写作思路,检索文献,撰写论文;邓益斌负责指导、修改论文并最终定稿。
详细信息
    通信作者:

    邓益斌,dengyb75@163.com

  • 中图分类号: R735.7

Role of competing endogenous RNA in the development and progression of hepatocellular carcinoma

Research funding: 

Natural Science Foundation of Guangxi Province (2018GXNSFAA281187)

  • 摘要: 竞争性内源RNA (ceRNA)理论是解释基因表达调控和生物功能的关键理论之一。该机制联合了不同的RNA分子,为RNA之间相互作用和RNA调控网络提供了新的见解。越来越多的研究证实了ceRNA调控在肿瘤发生发展中具有重要作用,其中大多数以lncRNA-miRNA-mRNA和circRNA-miRNA-mRNA调控网络为主。研究证实,多种ceRNA调控网络参与肿瘤细胞增殖、侵袭和迁移、药物抗性、血管生成以及肿瘤免疫等,影响肿瘤发展进程。阐述了ceRNA的调控机制,搜集了ceRNA调控肝细胞癌发生发展过程的研究进展,讨论在此过程中发挥关键作用的ceRNA调控网络。

     

  • [1] YING Q, WANG Y. Global prevalence and trend of liver cancer[J]. China Cancer, 2020, 29(3): 185-191. DOI: 10.11735/j.issn.1004-0242.2020.03.A005.

    应倩, 汪媛. 肝癌流行现况和趋势分析[J]. 中国肿瘤, 2020, 29(3): 185-191. DOI: 10.11735/j.issn.1004-0242.2020.03.A005.
    [2] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146(3): 353-358. DOI: 10.1016/j.cell.2011.07.014.
    [3] TAY Y, RINN J, PANDOLFI PP. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505(7483): 344-352. DOI: 10.1038/nature12986.
    [4] BOSSON AD, ZAMUDIO JR, SHARP PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition[J]. Mol Cell, 2014, 56(3): 347-359. DOI: 10.1016/j.molcel.2014.09.018.
    [5] THOMSON DW, DINGER ME. Endogenous microRNA sponges: Evidence and controversy[J]. Nat Rev Genet, 2016, 17(5): 272-283. DOI: 10.1038/nrg.2016.20.
    [6] LIU T, ZU CH, WANG SS, et al. PIK3C2A mRNA functions as a miR-124 sponge to facilitate CD151 expression and enhance malignancy of hepatocellular carcinoma cells[J]. Oncotarget, 2016, 7(28): 43376-43389. DOI: 10.18632/oncotarget.9716.
    [7] YANG ZP, MA HS, WANG SS, et al. LAMC1 mRNA promotes malignancy of hepatocellular carcinoma cells by competing for MicroRNA-124 binding with CD151[J]. IUBMB Life, 2017, 69(8): 595-605. DOI: 10.1002/iub.1642.
    [8] ZHANG H, WANG F, HU Y. STARD13 promotes hepatocellular carcinoma apoptosis by acting as a ceRNA for Fas[J]. Biotechnol Lett, 2017, 39(2): 207-217. DOI: 10.1007/s10529-016-2253-6.
    [9] KLINGENBERG M, MATSUDA A, DIEDERICHS S, et al. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets[J]. J Hepatol, 2017, 67(3): 603-618. DOI: 10.1016/j.jhep.2017.04.009.
    [10] YANG H, JIANG Z, WANG S, et al. Long non-coding small nucleolar RNA host genes in digestive cancers[J]. Cancer Med, 2019, 8(18): 7693-7704. DOI: 10.1002/cam4.2622.
    [11] ZHANG PF, WANG F, WU J, et al. LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234(3): 2788-2794. DOI: 10.1002/jcp.27095.
    [12] DONG J, TENG F, GUO W, et al. lncRNA SNHG8 promotes the tumorigenesis and metastasis by sponging miR-149-5p and predicts tumor recurrence in hepatocellular carcinoma[J]. Cell Physiol Biochem, 2018, 51(5): 2262-2274. DOI: 10.1159/000495871.
    [13] LAN T, MA W, HONG Z, et al. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 11. DOI: 10.1186/s13046-016-0486-9.
    [14] LI Y, GUO D, ZHAO Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway[J]. Cell Death Dis, 2018, 9(9): 888. DOI: 10.1038/s41419-018-0882-5.
    [15] ZHANG H, ZHOU D, YING M, et al. Expression of long non-coding RNA (lncRNA) small nucleolar rna host gene 1 (SNHG1) exacerbates hepatocellular carcinoma through suppressing miR-195[J]. Med Sci Monit, 2016, 22: 4820-4829. DOI: 10.12659/msm.898574.
    [16] LI S, HUANG Y, HUANG Y, et al. The long non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-dependent HMGB1/RAGE regulation[J]. J Exp Clin Cancer Res, 2017, 36(1): 51. DOI: 10.1186/s13046-017-0519-z.
    [17] XIAO J, DING Y, HUANG J, et al. The association of HMGB1 gene with the prognosis of HCC[J]. PLoS One, 2014, 9(2): e89097. DOI: 10.1371/journal.pone.0089097.
    [18] GAN Y, YE F, HE XX. The role of YWHAZ in cancer: A maze of opportunities and challenges[J]. J Cancer, 2020, 11(8): 2252-2264. DOI: 10.7150/jca.41316.
    [19] WEI GY, HU M, ZHAO L, et al. MiR-451a suppresses cell proliferation, metastasis and EMT via targeting YWHAZ in hepatocellular carcinoma[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12): 5158-5167. DOI: 10.26355/eurrev_201906_18180.
    [20] DONG X, YANG Z, YANG H, et al. Long non-coding RNA MIR4435-2HG promotes colorectal cancer proliferation and metastasis through miR-206/YAP1 axis[J]. Front Oncol, 2020, 10: 160. DOI: 10.3389/fonc.2020.00160.
    [21] LI C, WANG F, WEI B, et al. LncRNA AWPPH promotes osteosarcoma progression via activation of Wnt/β-catenin pathway through modulating miR-93-3p/FZD7 axis[J]. Biochem Biophys Res Commun, 2019, 514(3): 1017-1022. DOI: 10.1016/j.bbrc.2019.04.203.
    [22] MIAO Y, SUI J, XU SY, et al. Comprehensive analysis of a novel four-lncRNA signature as a prognostic biomarker for human gastric cancer[J]. Oncotarget, 2017, 8(43): 75007-75024. DOI: 10.18632/oncotarget.20496.
    [23] QIAN H, CHEN L, HUANG J, et al. The lncRNA MIR4435-2HG promotes lung cancer progression by activating β-catenin signalling[J]. J Mol Med (Berl), 2018, 96(8): 753-764. DOI: 10.1007/s00109-018-1654-5.
    [24] WANG K, LI X, SONG C, et al. LncRNA AWPPH promotes the growth of triple-negative breast cancer by up-regulating frizzled homolog 7 (FZD7)[J]. Biosci Rep, 2018, 38(6): BSR20181223. DOI: 10.1042/BSR20181223.
    [25] SHEN X, DING Y, LU F, et al. Long noncoding RNA MIR4435-2HG promotes hepatocellular carcinoma proliferation and metastasis through the miR-22-3p/YWHAZ axis[J]. Am J Transl Res, 2020, 12(10): 6381-6394. http://www.researchgate.net/publication/346896379_Long_noncoding_RNA_MIR4435-2HG_promotes_hepatocellular_carcinoma_proliferation_and_metastasis_through_the_miR-22-3pYWHAZ_axis
    [26] FU L, JIANG Z, LI T, et al. Circular RNAs in hepatocellular carcinoma: Functions and implications[J]. Cancer Med, 2018, 7(7): 3101-3109. DOI: 10.1002/cam4.1574.
    [27] HAN B, CHAO J, YAO H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018, 187: 31-44. DOI: 10.1016/j.pharmthera.2018.01.010.
    [28] BI J, LIU H, CAI Z, et al. Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis[J]. Aging (Albany NY), 2018, 10(8): 1964-1976. DOI: 10.18632/aging.101520.
    [29] QIU L, WANG T, GE Q, et al. Circular RNA signature in hepatocellular carcinoma[J]. J Cancer, 2019, 10(15): 3361-3372. DOI: 10.7150/jca.31243.
    [30] KONG Q, FAN Q, MA X, et al. CircRNA circUGGT2 contributes to hepatocellular carcinoma development via regulation of the miR-526b-5p/RAB1A axis[J]. Cancer Manag Res, 2020, 12: 10229-10241. DOI: 10.2147/CMAR.S263985.
    [31] ZHANG CZ, CAO Y, FU J, et al. miR-634 exhibits anti-tumor activities toward hepatocellular carcinoma via Rab1A and DHX33[J]. Mol Oncol, 2016, 10(10): 1532-1541. DOI: 10.1016/j.molonc.2016.09.001.
    [32] LIU Z, YU Y, HUANG Z, et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression[J]. Cell Death Dis, 2019, 10(12): 900. DOI: 10.1038/s41419-019-2089-9.
    [33] ZHANG X, XU Y, QIAN Z, et al. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(11): 1091. DOI: 10.1038/s41419-018-1132-6.
    [34] GLENFIELD C, MCLYSAGHT A. Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis[J]. Mol Biol Evol, 2018, 35(12): 2886-2899. DOI: 10.1093/molbev/msy183.
    [35] WANG MY, CHEN DP, QI B, et al. Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence[J]. Cell Death Dis, 2019, 10(6): 426. DOI: 10.1038/s41419-019-1666-2.
    [36] PIAO J, ZHU L, SUN J, et al. High expression of CDK1 and BUB1 predicts poor prognosis of pancreatic ductal adenocarcinoma[J]. Gene, 2019, 701: 15-22. DOI: 10.1016/j.gene.2019.02.081.
    [37] WANG C, YE ML, CHEN ZH, et al. Expression and clinical significance of pseudogene DUXAP8 in liver cancer[J]. J Clin Hepatol, 2020, 36(3): 580-586. DOI: 10.3969/j.issn.1001-5256.2020.03.022.

    王纯, 叶明亮, 陈志航, 等. 假基因DUXAP8在肝癌中的表达及其临床意义[J]. 临床肝胆病杂志, 2020, 36(3): 580-586. DOI: 10.3969/j.issn.1001-5256.2020.03.022.
    [38] ZHANG H, CHU K, ZHENG C, et al. Pseudogene DUXAP8 promotes cell proliferation and migration of hepatocellular carcinoma by sponging MiR-490-5p to induce BUB1 expression[J]. Front Genet, 2020, 11: 666. DOI: 10.3389/fgene.2020.00666.
    [39] PENG H, ISHIDA M, LI L, et al. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma[J]. Oncotarget, 2015, 6(8): 5666-5677. DOI: 10.18632/oncotarget.3290.
    [40] WU MY, TANG YP, LIU JJ, et al. Global transcriptomic study of circRNAs expression profile in sorafenib resistant hepatocellular carcinoma cells[J]. J Cancer, 2020, 11(10): 2993-3001. DOI: 10.7150/jca.39854.
  • 加载中
计量
  • 文章访问数:  490
  • HTML全文浏览量:  63
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 录用日期:  2021-02-09
  • 出版日期:  2021-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回