中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

葡萄糖-6-磷酸脱氢酶表达与肝细胞癌预后的关系

刘明君 刘颖娟 杨桂 刘松梅

引用本文:
Citation:

葡萄糖-6-磷酸脱氢酶表达与肝细胞癌预后的关系

DOI: 10.3969/j.issn.1001-5256.2021.08.021
基金项目: 

国家自然科学基金 (81772276)

利益冲突声明: 本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。
作者贡献声明: 刘明君负责实验和数据分析, 撰写论文; 刘颖娟参与收集数据, 修改论文; 杨桂、刘松梅负责课题设计, 指导撰写文章并最后定稿。
详细信息
    通信作者:

    杨桂, 2932485805@qq.com

    刘松梅, smliu@whu.edu.cn

  • 中图分类号: R735.7

Association of the expression of glucose-6-phosphate dehydrogenase with the prognosis of hepatocellular carcinoma

Research funding: 

National Natural Science Foundation of China (81772276)

  • 摘要:   目的  探究葡萄糖-6-磷酸脱氢酶(G6PD)基因在肝细胞癌(HCC)组织中的表达与患者预后的关系。  方法  收集2016年6月—2018年1月在武汉大学中南医院首诊的44例HCC患者癌组织及对应癌旁组织样本, RT-qRCR检测G6PD mRNA表达, 比较癌组织和癌旁组织G6PD表达水平差异。按照G6PD基因表达水平的中位数将HCC患者分为G6PD高表达组(n=22)和G6PD低表达组(n=22), 结合数据库数据进行分析, 用Kaplan-Meier法绘制生存曲线, 分析两组HCC患者总生存期和无进展生存期的差异。正态分布的计量资料2组间比较采用t检验, 偏态分布的计量资料2组间比较采用Mann-Whitney U检验, 计数资料2组间比较采用Fisher确切概率法; 相关性分析采用Spearman法。  结果  肝癌组织中G6PD mRNA表达水平是癌旁组织的2.09倍, 差异具有统计学意义(Z=-3.221, P=0.001)。G6PD高表达是影响HCC患者肝切除术后总生存期(HR=1.84, 95%CI: 1.30~2.61, P=0.000 52)和无进展生存期(HR=1.75, 95%CI: 1.27~2.42, P=0.000 54)的危险因素。在G6PD低表达组中淋巴细胞/单核细胞比值(LMR)明显高于G6PD高表达组(t=2.681, P=0.011), G6PD与LMR呈负相关(r=-0.439, P=0.005)。  结论  肝癌患者癌组织中G6PD表达升高可能会引起LMR降低, G6PD表达可能与肿瘤微环境炎症有关, G6PD的高表达对HCC的预后评估具有一定的临床价值。

     

  • 图  1  肝癌组织中G6PD mRNA表达及其与预后评估

    注: a, HCC患者癌组织和癌旁组织G6PD mRNA表达水平比较; b, GEPIA数据库中G6PD在肝癌组织中表达; c, G6PD高表达和低表达患者总生存曲线; d, G6PD高表达和低表达患者无进展生存曲线。

    图  2  G6PD mRNA表达与LMR相关性

    表  1  HCC患者低G6PD组和高G6PD组的基本资料

    指标 低G6PD组(n=22) 高G6PD组(n=22) P
    年龄(岁) 57.04±9.88 52.00±8.74 0.080
    男/女(例) 17/5 17/5 1.000
    HBV DNA(例) 0.537
      <500 IU/ml 7 10
      ≥500 IU/ml 15 12
    TNM分期(例) 0.736
      Ⅰ~Ⅱ 15 17
      Ⅲ~Ⅳ 7 5
    下载: 导出CSV

    表  2  肝癌患者G6PD表达水平与术前临床指标关系

    指标 低G6PD组(n=22) 高G6PD组(n=22) 统计值 P
    ALT(U/L) 41.09±28.89 43.64±39.56 t=-0.244 0.809
    AST(U/L) 49.00±33.74 47.23±30.33 t=0.183 0.855
    总胆红素(μmol/L) 16.60±6.83 20.44±8.93 t=-1.604 0.116
    直接胆红素(μmol/L) 4.49±2.82 4.94±2.20 t=-0.579 0.566
    间接胆红素(μmol/L) 12.35±4.96 15.05±7.87 t=-1.335 0.187
    TP(g/L) 66.80±5.96 67.58±6.27 t=-0.422 0.675
    Alb(g/L) 39.66±3.75 39.65±5.63 t=0.006 0.995
    Glb(g/L) 27.14±4.17 27.92±4.82 t=-0.575 0.568
    GGT(U/L) 61.00±46.68 66.05±43.69 t=-0.366 0.716
    ALP(U/L) 103.82±52.41 108.05±56.92 t=-0.256 0.799
    WBC(×109/L) 5.35±1.66 5.61±2.34 t=-0.413 0.682
    RBC(×1012/L) 4.24±0.85 4.41±0.70 t=-0.691 0.494
    HGB(g/L) 129.59±25.11 135.34±18.16 t=-0.844 0.404
    PLT(×109/L) 150.10±54.03 173.19±82.75 t=-1.052 0.229
    中性粒细胞计数(×109/L) 3.41±1.64 3.80±1.80 t=-0.717 0.478
    淋巴细胞计数(×109/L) 1.39±0.55 1.19±0.59 t=1.116 0.271
    单核细胞计数(×109/L) 0.42±0.14 0.50±0.21 t=-1.531 0.134
    LMR 3.49±1.44 2.45±0.96 t=2.681 0.011
    PT(s) 11.59±1.06 11.70±0.88 t=-0.348 0.730
    INR 1.06±0.10 1.07±0.08 t=-0.295 0.770
    PTTA(%) 97.81±14.29 97.15±15.26 t=0.143 0.887
    APTT(s) 32.20±2.78 32.63±3.65 t=-0.433 0.668
    TT(s) 14.97±1.22 14.30±1.77 t=1.438 0.158
    FIB(mg/dl) 286.61±56.74 308.19±81.70 t=-0.994 0.326
    AFP(μg/L) 143.80(6.22~2 386.96) 1 481.35(56.20~4 453.63) Z=-1.723 0.085
    下载: 导出CSV
  • [1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
    [2] AN L, ZENG HM, ZHENG RS, et al. Liver cancer epidemiology in china, 2015[J]. Chin J Oncol, 2019, 41(10): 721-727. DOI: 10.3760/cma.j.issn.0253?3766.2019.10.001.

    安澜, 曾红梅, 郑荣寿, 等. 2015年中国肝癌流行情况分析[J]. 中华肿瘤杂志, 2019, 41(10): 721-727. DOI: 10.3760/cma.j.issn.0253?3766.2019.10.001.
    [3] PATRA KC, HAY N. The pentose phosphate pathway and cancer[J]. Trends Biochem Sci, 2014, 39(8): 347-354. DOI: 10.1016/j.tibs.2014.06.005.
    [4] CAI T, KUANG Y, ZHANG C, et al. Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2[J]. Am J Cancer Res, 2015, 5(5): 1610-1620. http://europepmc.org/articles/PMC4497430
    [5] MELE L, LA NOCE M, PAINO F, et al. Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation[J]. J Exp Clin Cancer Res, 2019, 38(1): 160. DOI: 10.1186/s13046-019-1164-5.
    [6] ZHANG R, TAO F, RUAN S, et al. The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression[J]. Am J Transl Res, 2019, 11(11): 6860-6876. http://www.ncbi.nlm.nih.gov/pubmed/31814893
    [7] RAO X, DUAN X, MAO W, et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth[J]. Nat Commun, 2015, 6: 8468. DOI: 10.1038/ncomms9468.
    [8] BARAJAS JM, REYES R, GUERRERO MJ, et al. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer[J]. Sci Rep, 2018, 8(1): 9105. DOI: 10.1038/s41598-018-27358-5.
    [9] PES GM, ERRIGO A, SORO S, et al. Glucose-6-phosphate dehydrogenase deficiency reduces susceptibility to cancer of endodermal origin[J]. Acta Oncol, 2019, 58(9): 1205-1211. DOI: 10.1080/0284186X.2019.1616815.
    [10] ZHANG X, ZHANG X, LI Y, et al. PAK4 regulates G6PD activity by p53 degradation involving colon cancer cell growth[J]. Cell Death Dis, 2017, 8(5): e2820. DOI: 10.1038/cddis.2017.85.
    [11] TANG Y, HU HQ, TANG FX, et al. Combined preoperative LMR and CA125 for prognostic assessment of ovarian cancer[J]. J Cancer, 2020, 11(11): 3165-3171. DOI: 10.7150/jca.42477.
    [12] MANDALIYA H, JONES M, OLDMEADOW C, et al. Prognostic biomarkers in stage Ⅳ non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI)[J]. Transl Lung Cancer Res, 2019, 8(6): 886-894. DOI: 10.21037/tlcr.2019.11.16.
    [13] ISMAEL MN, FORDE J, MILLA E, et al. Utility of inflammatory markers in predicting hepatocellular carcinoma survival after liver transplantation[J]. Biomed Res Int, 2019, 2019: 7284040. DOI: 10.1155/2019/7284040.
    [14] Bureau of Medical Administration, National Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition)[J]. J Clin Hepatol, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.

    中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 临床肝胆病杂志, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.
    [15] European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1): 182-236. DOI: 10.1016/j.jhep.2018.03.019.
    [16] SHANG RZ, QU SB, WANG DS. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects[J]. World J Gastroenterol, 2016, 22(45): 9933-9943. DOI: 10.3748/wjg.v22.i45.9933.
    [17] ZUCMAN-ROSSI J, VILLANUEVA A, NAULT JC, et al. Genetic landscape and biomarkers of hepatocellular carcinoma[J]. Gastroenterology, 2015, 149(5): 1226-1239. e4. DOI: 10.1053/j.gastro.2015.05.061.
    [18] LU M, LU L, DONG Q, et al. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(4): 370-380. DOI: 10.1093/abbs/gmy009.
    [19] SOSA V, MOLINÉ T, SOMOZA R, et al. Oxidative stress and cancer: An overview[J]. Ageing Res Rev, 2013, 12(1): 376-390. DOI: 10.1016/j.arr.2012.10.004.
    [20] MOLONEY JN, COTTER TG. ROS signalling in the biology of cancer[J]. Semin Cell Dev Biol, 2018, 80: 50-64. DOI: 10.1016/j.semcdb.2017.05.023.
    [21] YAN YC, WEN K, MAO K, et al. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma[J]. J Clin Hepatol, 2020, 36(10): 2167-2172. DOI: 10.3969/j.issn.1001-5256.2020.10.002.

    颜永聪, 温凯, 毛凯, 等. HBV相关肝细胞癌的发生机制[J]. 临床肝胆病杂志, 2020, 36(10): 2167-2172. DOI: 10.3969/j.issn.1001-5256.2020.10.002.
    [22] LIU B, FANG M, HE Z, et al. Hepatitis B virus stimulates G6PD expression through HBx-mediated Nrf2 activation[J]. Cell Death Dis, 2015, 6: e1980. DOI: 10.1038/cddis.2015.322.
    [23] LIM CJ, LEE YH, PAN L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma[J]. Gut, 2019, 68(5): 916-927. DOI: 10.1136/gutjnl-2018-316510.
    [24] CHEN XQ, XUE CR, HOU P, et al. Lymphocyte-to-monocyte ratio effectively predicts survival outcome of patients with obstructive colorectal cancer[J]. World J Gastroenterol, 2019, 25(33): 4970-4984. DOI: 10.3748/wjg.v25.i33.4970.
    [25] ZHU YW, YAO MJ, BO YC, et al. Prognostic assessment of lymphocyte-to-monocyte ratio for patients with primary liver cancer after curative hepatectomy[J]. J Zhengzhou Univ (Medical Sciences), 2017, 52(2): 197-200. DOI: 10.13705/j.issn.1671-6825.2017.02.023.

    朱艺伟, 姚明解, 薄亚聪, 等. 淋巴细胞与单核细胞比值对原发性肝癌患者根治性切除术后预后的预测价值[J]. 郑州大学学报(医学版), 2017, 52(2): 197-200. DOI: 10.13705/j.issn.1671-6825.2017.02.023.
    [26] MANO Y, YOSHIZUMI T, YUGAWA K, et al. Lymphocyte-to-monocyte ratio is a predictor of survival after liver transplantation for hepatocellular carcinoma[J]. Liver Transpl, 2018, 24(11): 1603-1611. DOI: 10.1002/lt.25204.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  225
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 录用日期:  2021-01-25
  • 出版日期:  2021-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回