中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳酸氢根伞在原发性胆汁性胆管炎发病机制中的作用

常英昊 景丹 徐文姣 周晓蕾 王孝平 汤善宏

引用本文:
Citation:

碳酸氢根伞在原发性胆汁性胆管炎发病机制中的作用

DOI: 10.3969/j.issn.1001-5256.2021.03.043
基金项目: 

西部战区总医院军事医学研究项目 (2019ZY03)

利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明:常英昊负责收集分析文献与论文撰写,同时参与拟定了写作思路;景丹、徐文姣参与了收集分析文献以及论文修改;周晓蕾、王孝平参与了收集分析文献;汤善宏负责拟定写作思路,指导撰写文章与最后定稿。
详细信息
    作者简介:

    常英昊(1992—),男,主治医师,博士,主要从事肝脏疾病相关基础与临床研究

    通信作者:

    汤善宏,shanhongtang@163.com

  • 中图分类号: R575.7

Role of HCO3- umbrella in the pathogenesis of primary biliary cholangitis

  • 摘要: 原发性胆汁性胆管炎(PBC)是一种自身免疫性疾病。虽然PBC具有自身免疫性疾病的特征,但是免疫抑制剂对其疗效不佳,而熊去氧胆酸等参与调节胆汁酸代谢的药物却具有良好疗效。研究显示PBC患者胆管上皮细胞的碳酸氢根(HCO3-)分泌功能受损,失去HCO3-伞阻挡的胆汁酸进入胆管上皮细胞并介导细胞损伤与凋亡,引发凋亡细胞表达自身抗原并造成免疫损伤。为探究胆管上皮细胞所分泌的HCO3-伞在PBC发病机制中的作用, 简述了HCO3-伞的生理功能与产生机制,以及HCO3-分泌的影响因素等,并指出HCO3-分泌减少可能是PBC发病机制的关键环节和潜在治疗靶点。

     

  • [1] MEDINA JF. Role of the anion exchanger 2 in the pathogenesis and treatment of primary biliary cirrhosis[J]. Dig Dis, 2011, 29(1): 103-112. DOI: 10.1159/000324144
    [2] SASAKI M, SATO Y, NAKANUMA Y. An impaired biliary bicarbonate umbrella may be involved in dysregulated autophagy in primary biliary cholangitis[J]. Lab Invest, 2018, 98(6): 745-754. DOI: 10.1038/s41374-018-0045-4
    [3] DEUTSCHMANN K, REICH M, KLINDT C, et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1319-1325. http://www.ncbi.nlm.nih.gov/pubmed/28844960
    [4] BEUERS U, HOHENESTER S, MAILLETTE BW, et al. The biliary HCO3- umbrella: A unifying hypothesis on pathogenetic and therapeutic aspects of fibrosingcholangiopathies[J]. Hepatology, 2010, 52(4): 1489-1496. DOI: 10.1002/hep.23810
    [5] MAILLETTE de BUY WENNIGER LJ, HOHENESTER S, MARONI L, et al. The cholangiocyte glycocalyx stabilizes the 'biliary HCO3 umbrella': An integrated line of defense against toxic bile acids[J]. Dig Dis, 2015, 33(3): 397-407. DOI: 10.1159/000371864
    [6] HOHENESTER S, WENNIGER LM, PAULUSMA CC, et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes[J]. Hepatology, 2012, 55(1): 173-183. DOI: 10.1002/hep.24691
    [7] LI M, CAI SY, BOYER JL. Mechanisms of bile acid mediated inflammation in the liver[J]. Mol Aspects Med, 2017, 56: 45-53. DOI: 10.1016/j.mam.2017.06.001
    [8] THAKKAR N, SLIZGI JR, BROUWER K. Effect of liver disease on hepatic transporter expression and function[J]. J Pharm Sci, 2017, 106(9): 2282-2294. DOI: 10.1016/j.xphs.2017.04.053
    [9] van NIEKERK J, KERSTEN R, BEUERS U. Role of bile acids and the biliary HCO3- umbrella in the pathogenesis of primary biliary cholangitis[J]. Clin Liver Dis, 2018, 22(3): 457-479. DOI: 10.1016/j.cld.2018.03.013
    [10] BOYER JL. Bile formation and secretion[J]. Compr Physiol, 2013, 3(3): 1035-1078.
    [11] WU N, MENG F, ZHOU T, et al. The secretin/secretin receptor axis modulates ductular reaction and liver fibrosis through changes in transforming growth factor-β1-mediated biliary senescence[J]. Am J Pathol, 2018, 188(10): 2264-2280. DOI: 10.1016/j.ajpath.2018.06.015
    [12] MINAGAWA N, NAGATA J, SHIBAO K, et al. Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile[J]. Gastroenterology, 2007, 133(5): 1592-1602. DOI: 10.1053/j.gastro.2007.08.020
    [13] TIETZ PS, MARINELLI RA, CHEN XM, et al. Agonist-induced coordinated traffickingof functionally related transport proteins for water and ions in cholangiocytes[J]. J Biol Chem, 2003, 278(22): 20413-20419. DOI: 10.1074/jbc.M302108200
    [14] STEEGBORN C. Structure, mechanism, and regulation of soluble adenylyl cyclases-similarities and differences to transmembrane adenylyl cyclases[J]. Biochim Biophys Acta, 2014, 1842(12 Pt B): 2535-2547. http://europepmc.org/abstract/med/25193033
    [15] PRIETO J, GARCÍA N, MARTÍ-CLIMENT JM, et al. Assessment of biliary bicarbonate secretion in humans by positron emission tomography[J]. Gastroenterology, 1999, 117(1): 167-172. DOI: 10.1016/S0016-5085(99)70564-0
    [16] JURAN BD, LAZARIDIS KN. Update on the genetics and genomics of PBC[J]. J Autoimmun, 2010, 35(3): 181-187. DOI: 10.1016/j.jaut.2010.06.005
    [17] KOUROUMALIS E, SAMONAKIS D, VOUMVOURAKI A. Biomarkers for primary biliary cholangitis: Current perspectives[J]. Hepat Med, 2018, 10: 43-53. DOI: 10.2147/HMER.S135337
    [18] ARENAS F, HERVÍAS I, SÁEZ E, et al. Promoter hypermethylation of the AE2/SLC4A2 gene in PBC[J]. JHEP Rep, 2019, 1(3): 145-153. DOI: 10.1016/j.jhepr.2019.05.006
    [19] ERICE O, MUNOZ-GARRIDO P, VAQUERO J, et al. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation[J]. Hepatology, 2018, 67(4): 1420-1440. DOI: 10.1002/hep.29533
    [20] MEENAKSHISUNDARAM A, JESUS MB, MATEUS TG, et al. Post-translational regulation of the type Ⅲ inositol 1, 4, 5-trisphosphate receptor by miRNA-506[J]. J BiolChem, 2015, 290(1): 184-196. http://www.sciencedirect.com/science/article/pii/S0021925820579192
    [21] KLEINBOELTING S, DIAZ A, MONIOT S, et al. Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate[J]. Proc Natl Acad Sci U S A, 2014, 111(10): 3727-3732. DOI: 10.1073/pnas.1322778111
    [22] CHANG JC, GO S, de WAART DR, et al. Soluble adenylyl cyclase regulates bile salt-induced apoptosis in human cholangiocytes[J]. Hepatology, 2016, 64(2): 522-534. DOI: 10.1002/hep.28550
    [23] CHANG JC, GO S, VERHOEVEN AJ, et al. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; A new hypothesis[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1232-1239. http://europepmc.org/abstract/MED/28962898
    [24] FUKUI H. Increased intestinal permeability and decreased barrier function: Does it really influence the risk of inflammation?[J]. Inflamm Intest Dis, 2016, 1(3): 135-145. DOI: 10.1159/000447252
    [25] KIZILTAS S. Toll-like receptors in pathophysiology of liver diseases[J]. World J Hepatol, 2016, 8(32): 1354-1369. DOI: 10.4254/wjh.v8.i32.1354
    [26] ZHU M, AN Y, ZHANG X, et al. Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation[J]. Cell Tissue Res, 2019, 378(2): 255-265. DOI: 10.1007/s00441-019-03054-2
    [27] FRANCA A, CARLOS MELO LIMA FILHO A, GUERRA MT, et al. Effects of endotoxin on type 3 inositol 1, 4, 5-trisphosphate receptor in human cholangiocytes[J]. Hepatology, 2019, 69(2): 817-830. DOI: 10.1002/hep.30228
    [28] TSUBOI H, OHIRA H, ASASHIMA H, et al. Anti-M3 muscarinic acetylcholine receptor antibodies in patients with primary biliary cirrhosis[J]. Hepatol Res, 2014, 44(14): e471-e479. DOI: 10.1111/hepr.12346
    [29] CONCEPCION AR, LOPEZ M, ARDURA-FABREGAT A, et al. Role of AE2 for pHi regulation in biliary epithelial cells[J]. Front Physiol, 2013, 4: 413. http://www.ncbi.nlm.nih.gov/pubmed/24478713
    [30] SAMANT H, MANATSATHIT W, DIES D, et al. Cholestatic liver diseases: An era of emerging therapies[J]. World J Clin Cases, 2019, 7(13): 1571-1581. DOI: 10.12998/wjcc.v7.i13.1571
  • 加载中
计量
  • 文章访问数:  501
  • HTML全文浏览量:  252
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 录用日期:  2020-10-22
  • 出版日期:  2021-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回