中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 37 Issue 9
Sep.  2021
Turn off MathJax
Article Contents

Mechanism of "Szechwan Chinaberry Fruit-Rhizoma Corydalis" drug combination in treatment of liver cancer based on network pharmacology

DOI: 10.3969/j.issn.1001-5256.2021.09.026
Research funding:

Postgraduate Workstation of TCM Oncology (JYSZ(2014)018);

High-level Innovative Talent Cultivation Plan of Guizhou Province (Hundred Levels) ((2016)4032);

Guizhou Provincial Talent Base for TCM Tumor Inheritance and Science and technology Innovation ((2018)3);

Yang Zhu "Traditional Chinese Medicine Oncology" Graduate Tutor Studio, Guizhou Province (GZS(2016)08);

Large health science and technology Cooperation project of the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang Science and Technology Bureau ((2019)9-2);

Guizhou Provincial Department of Science and Technology of Traditional Chinese Medicine Tumor Inheritance and Science and Technology Innovation Talent Team ((2020)5013);

National Natural Science Foundation of China (81660833);

Graduate Education Innovation Program of Guizhou University of Traditional Chinese Medicine (YFYYJSCX2018-28)

  • Received Date: 2021-02-06
  • Accepted Date: 2021-03-09
  • Published Date: 2021-09-20
  •   Objective  To investigate the pharmacological components of "Szechwan Chinaberry Fruit-Rhizoma Corydalis" drug combination and its potential molecular mechanism in the treatment of liver cancer based on network pharmacology.  Methods  Related databases, such as TCMSP, Uniprot, and GeneCard, were used to obtain the effective components of Szechwan Chinaberry Fruit and Rhizoma Corydalis, their corresponding action targets, and the disease targets of liver cancer, and the intersecting targets of drugs and diseases were selected. In addition, STRING and Metascape databases were used to screen out the core targets of drug action and perform GO function and KEGG pathway enrichment analyses.  Results  There were 9 active components in Szechwan Chinaberry Fruit and 49 active components in Rhizoma Corydalis, with 1 common component between the two drugs; there were 181 action targets of Szechwan Chinaberry Fruit and 1097 action targets of Rhizoma Corydalis, with 143 common targets between the two drugs. There were 162 intersecting targets between the drug combination and liver cancer, and the main genes involved were IL6, TP53, VEGFA, TNF, and CASP3. KEGG analysis showed that the main pathways involved included cancer pathway, AGE-RAGE signaling pathway of diabetes complications, TNF signaling pathway, NF-κB signaling pathway, and thyroid hormone signaling pathway.  Conclusion  There are many different components in the drug combination of "Szechwan Chinaberry Fruit-Rhizoma Corydalis", which can exert a therapeutic effect on liver cancer by acting on related genes and signaling pathways.

     

  • loading
  • [1]
    ZHENG RS, ZUO TT, ZENG HM, et al. Mortality and survival analysis of liver cancer in China[J]. Chin J Oncol, 2015, 37(9): 697-702. DOI: 10.3760/cma. j.issn. 0253-3766.2015.09.014.

    郑荣寿, 左婷婷, 曾红梅, 等. 中国肝癌死亡状况与生存分析[J]. 中华肿瘤杂志, 2015, 37(9): 697-702. DOI: 10.3760/cma.j.issn.0253-3766.2015.09.014.
    [2]
    TANG DX. Differentiation and clinical application of Liu Shangyi's common drugs[M]. Beijing: Chinese Science Publishing, 2015: 94-95.

    唐东昕. 刘尚义常用药对辨析与临床应用[M]. 北京: 科学出版社, 2015: 94-95.
    [3]
    ZHENG BB, DOU ZY. Antalgic and anti-inflammatory action of compatibility of different processed products of corydalis tuber and fructus meliae toosendan in Jinlingzi powder[J]. J Tianjin Univ Tradit Chin Med, 2011, 30(4): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-TZYY201104012.htm

    郑蓓蓓, 窦志英. 对金铃子散中延胡索和川楝子不同炮制品之间配伍后镇痛抗炎作用研究[J]. 天津中医药大学学报, 2011, 30(4): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-TZYY201104012.htm
    [4]
    LI HB, MA SJ, SHI DF. Research progress on chemical constituents, pharmacological action and toxicity of Melia toosendan[J]. Chin Tradit Herb Drug, 2020, 51(15): 4059-4074. DOI: 10.7501/j.issn.0253-2670.2020.15.027.

    李海波, 马森菊, 石丹枫. 川楝子的化学成分、药理作用及其毒性研究进展[J]. 中草药, 2020, 51(15): 4059-4074. DOI: 10.7501/j.issn.0253-2670.2020.15.027.
    [5]
    FENG ZL, ZHAO ZD, LIU JX. Research progress on chemical components and pharmacological effects of corydalis yanhusuo[J]. Nat Prod Res Dev, 2018, 30(11): 155-163. DOI: 10.16333/j.1001-6880.2018.11.024.

    冯自立, 赵正栋, 刘建欣. 延胡索化学成分及药理活性研究进展[J]. 天然产物研究与开发, 2018, 30(11): 155-163. DOI: 10.16333/j.1001-6880.2018.11.024.
    [6]
    RAN Q, LOU GH, ZENG HR, et al. Study on mechanism of reducing excess fire of liver and gallbladder of bile processed coptidis rhizoma based on UPLC-Q-Orbitrap HRMS and network pharmacology[J]. Chin J Exp Med Formul, 2020, 26(13): 181-189. DOI: 10.13422/j.cnki.syfjx.20201057.

    冉倩, 楼冠华, 曾海蓉, 等. 基于UPLC-Q-Orbitrap HRMS和网络药理学分析胆黄连的泻肝胆实火机制[J]. 中国实验方剂学杂志, 2020, 26(13): 181-189. DOI: 10.13422/j.cnki.syfjx.20201057.
    [7]
    YUAN LL, WANG Q. Mechanism of Zexie Decoction in the treatment of glioma cerebral edema based on network pharmacology[J]. J Changchun Univ Chin Med, 2019, 35(5): 912-915. DOI: 10.13463/j.cnki.cczyy.2019.05.028.

    袁莉莉, 王倩. 基于网络药理学研究泽泻汤治疗脑水肿的作用机制[J]. 长春中医药大学学报, 2019, 35(5): 912-915. DOI: 10.13463/j.cnki.cczyy.2019.05.028.
    [8]
    LI XB, JIANG GY, DONG H. Network pharmacology study of tetramethylpyrazine on the treatment of acute myeloid leukemia[J]. J Changchun Univ Chin Med, 2020, 36(1): 67-70. DOI: 10.13463/j.cnki.cczyy.2020.01.021.

    李续博, 姜广宇, 董航. 川芎嗪对急性髓系白血病治疗作用的网络药理学研究[J]. 长春中医药大学学报, 2020, 36(1): 67-70. DOI: 10.13463/j.cnki.cczyy.2020.01.021.
    [9]
    GONG XJ, NI YN. Use of network pharmacology to determine the active ingredients of Coicis Semen on liver cancer[J]. Chin J New Drugs, 2020, 29(16): 1902-1910. DOI: 10.3969/j.issn.1003-3734.2020.16.018.

    巩晓杰, 倪颖男. 利用网络药理学确定薏苡仁作用肝癌的有效活性成分[J]. 中国新药杂志, 2020, 29(16): 1902-1910. DOI: 10.3969/j.issn.1003-3734.2020.16.018.
    [10]
    OUYANG SL, YANG Z, LONG FX, et al. Activity components and mechanism of rabdosia rubescens for anti-tumor based on network pharmacology[J]. Chin Arch Tradit Chin Med, 2021, 39(4): 192-195, 304-305. DOI: 10.13193/j.issn. 1673-7717.2021.04.049.

    欧阳思露, 杨柱, 龙奉玺, 等. 基于网络药理学探讨冬凌草抗癌的活性成分及作用机制[J]. 中华中医药学刊, 2021, 39(4): 192-195, 304-305. DOI: 10.13193/j.issn. 1673-7717.2021.04.049.
    [11]
    LI J, MO JH, XU HB, et al. Mechanism of action of Sini powder in treatment of liver cancer based on network pharmacology and molecular docking[J]. J Clin Hepatol, 2020, 36(9): 1998-2004. DOI: 10.3969/j.issn.1001-5256.2020.09.018.

    李菁, 莫嘉浩, 许洪彬, 等. 基于网络药理学与分子对接研究四逆散治疗肝癌的作用机制[J]. 临床肝胆病杂志, 2020, 36(9): 1998-2004. DOI: 10.3969/j.issn.1001-5256.2020.09.018.
    [12]
    CAO ZC, LIU JH. Overview of Chinese and Western medicine in cancer[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2009: 247.

    曹志成, 刘洁华. 癌中西医面面观[M]. 上海: 上海科学技术出版社, 2009: 247.
    [13]
    DAI Y, AI TB. Semi-bionic extracrion and anticancer activity of jinlingzi san[J]. J Jinggangshan University (Natural Sciences Edition), 2018, 39(3): 98-101. DOI: 10.3969/j.issn.1674-8085.2018.03.020.

    戴一, 艾甜碧. 金铃子散的半仿生提取及抗癌活性研究[J]. 井冈山大学学报(自然科学版), 2018, 39(3): 98-101. DOI: 10.3969/j.issn.1674-8085.2018.03.020.
    [14]
    DAI Y, AI TB. Advances on the antitumor active compositions of fructus toosendan and rhizoma corydalis[J]. J Shantou University (Natural Science), 2018, 33(1): 57-62. DOI: 10.3969/j.issn.1001-4217.2018.01.007.

    戴一, 艾甜碧. 川楝子与延胡索抗癌活性成分研究进展[J]. 汕头大学学报(自然科学版), 2018, 33(1): 57-62. DOI: 10.3969/j.issn.1001-4217.2018.01.007.
    [15]
    TANG XL, YANG XY, KIM YC, et al. Protective effects of the ethanolic extract of melia toosendan fruit againstcolon cancer[J]. Indian J Biochem Biophys, 2012, 49(3): 173-181. DOI: 10.1684/ecn.2012.0308.
    [16]
    MOU WS. Inhibitory effect of corydalis powder on H22 hepatic carcinoma[J]. Medical Information, 2010, 23(5): 1241- 1242. DOI: 10.3969/j.issn.1006-1959.2010.05.234

    牟唯省. 延胡索粉末对小鼠肝癌H22的抑制作用[J]. 医学信息, 2010, 23(5): 1241-1242. DOI: 10.3969/j.issn.1006-1959.2010.05.234
    [17]
    REN KW, LI YH, WU G, et al. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells[J]. Int J Oncol, 2017, 50(4): 1299-1311. DOI: 10.3892/ijo.2017.3886.
    [18]
    HISAKA T, SAKAI H, SATO T, et al. Quercetin suppresses proliferation of liver cancer cell lines in vitro[J]. Anticancer Res, 2020, 40(8): 4695-4700. DOI: 10.21873/anticanres.14469.
    [19]
    SUN J, ZHAO DG, WANG MY, et al. Influence of quercetin on PI3K /AKT signal pathway of SMMC-7721 hepatic cancer cells[J]. Chin J Exp Med Formul, 2012, 18(18): 223-226. DOI: 10.13422/j.cnki.syfjx.2012.18.073.

    孙佳, 赵冬耕, 王明艳, 等. 槲皮素对SMMC-7721肝癌细胞PI3K/AKT信号通路影响的探讨[J]. 中国实验方剂学杂志, 2012, 18(18): 223-226. DOI: 10.13422/j.cnki.syfjx.2012.18.073.
    [20]
    BRITO AF, RIBEIRO M, ABRANTES AM, et al. New approach for treatment of primary liver tumors: The role of quercetin[J]. Nutre Cancer, 2016, 68(2): 250-266. DOI: 10.1080/01635581.2016.1145245.
    [21]
    CHENG XX, WANG DM, YANG DP. Advances in studies on biological activity and structure-activity relationships of isoquinoline alkaloids[J]. Chin Tradit Herb Drug, 2006, 37(12): 1900-1904. DOI: 10.3321/j.issn:0253-2670.2006.12.052.

    程轩轩, 王冬梅, 杨得坡. 异喹啉类生物碱的生物活性和构效关系研究进展[J]. 中草药, 2006, 37(12): 1900-1904. DOI: 10.3321/j.issn:0253-2670.2006.12.052.
    [22]
    CAO P, ZHANG ZW, LI Y, et al. Progress of antibacterial activity and antibacterial mechanism of isoquinoline alkaloids[J]. China J Chin Mater Med, 2016, 41(14): 2600-2606. DOI: 10.4268/cjcmm20161406.

    曹鹏, 张紫薇, 李滢, 等. 异喹啉类生物碱抑菌活性及抑菌机制研究进展[J]. 中国中药杂志, 2016, 41(14): 2600-2606. DOI: 10.4268/cjcmm20161406.
    [23]
    ZHAO N, GAO F, LIU B, et al. Research advance on the pharmacological effects of benzyltetrahydroisoquinolinesalkaloids[J]. J Pharm Pract, 2015, 33(4): 313-315. DOI: 10.3969/j.issn.1006-0111.2015.04.006.

    赵娜, 高峰, 刘彬, 等. 苄基四氢异喹啉类生物碱的药理作用及其研究进展[J]. 药学实践杂志, 2015, 33(4): 313-315. DOI: 10.3969/j.issn.1006-0111.2015.04.006.
    [24]
    LIU C, YANG S, WANG K, et al. Alkaloids from traditional Chinese medicine against hepatocellular carcinoma[J]. Biomed Pharmacother, 2019, 120: 109543. DOI: 10.1016/j.biopha.2019.109543.
    [25]
    GUO G, ZHOU J, YANG X, et al. Role of microRNAs induced by Chinese herbal medicines against hepatocellular carcinoma: A brief review[J]. Integr Cancer Ther, 2018, 17(4): 1059-1067. DOI: 10.1177/1534735418805564.
    [26]
    LIN JG, YAO KW, WANG QQ, et al. Mechanism of Xuefu Zhuyu Decoction in treatment of myocardial infarction based on network pharmacology and molecular docking[J]. China J Chin Mater Med, 2021, 46(4): 885-893. DOI: 10.19540/j.cnki.cjcmm.20201106.402.

    林建国, 姚魁武, 王擎擎, 等. 基于网络药理学和分子对接探讨血府逐瘀汤治疗心肌梗死的作用机制[J]. 中国中药杂志, 2021, 46(4): 885-893. DOI: 10.19540/j.cnki.cjcmm.20201106.402.
    [27]
    CRON L, ALLEN T, FEBBRAIO MA. The role of gp130 receptor cytokines in the regulation of metabolic homeostasis[J]. J Exp Biol, 2016, 219(Pt 2): 259-265. DOI: 10.1242/jeb.129213.
    [28]
    CHANG Q, DALY L, BROMBERG J. The IL-6 feed-forward loop: A driver of tumorigenesis[J]. Semin Immunol, 2014, 26(1): 48-53. DOI: 10.1016/j.smim.2014.01.007.
    [29]
    WANG L, ZHAO YH, LIU Y, et al. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NF-κB signaling[J]. Stem Cells, 2013, 31(7): 1383-1395. DOI: 10.1002/stem.1388.
    [30]
    LEBREC H, PONCE R, PRESTON BD, et al. Tumor necrosis factor, tumor necrosis factor inhibition, and cancer risk[J]. Curr Med Res Opin, 2015, 31(3): 557-574. DOI: 10.1185/03007995.2015.1011778.
    [31]
    SAVAS P, HUGHES B, SOLOMON B. Targeted therapy in lung cancer: IPASS and beyond, keeping abreast of the explosion of targeted therapies for lung cancer[J]. J Thorac Dis, 2013, 5(5): 579-592. DOI: 10.3978/j.issn.2072-1439.2013.08.52.
    [32]
    WANG AH, ZHAO JM, DU J, et al. Inhibitory effect and mechanisms of ginsenoside Rg3 combined with cisplatin on the metastasis and microangiogenesis of hepatocellular carcinoma in mice[J]. Chin J Comp Med, 2019, 29(12): 83-87. DOI: 10.3969/j.issn.1671-7856.2019.12.012.

    王爱红, 赵菊梅, 杜娟, 等. 人参皂苷Rg3联合顺铂抑制小鼠肝细胞癌转移及微血管生成的机制研究[J]. 中国比较医学杂志, 2019, 29(12): 83-87. DOI: 10.3969/j.issn.1671-7856.2019.12.012.
    [33]
    WANG YW, LIN KT, CHEN SC, et al. Overexpressed-eIF3I interacted and activated oncogenic Akt1 is a theranostic target in human hepatocellular carcinoma[J]. Hepatology, 2013, 58(1): 239-250. DOI: 10.1002/hep.26352.
    [34]
    RAHMANI F, ZIAEEMEHR A, SHAHIDSALES S, et al. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma[J]. J Cell Physiol, 2020, 235(5): 4146-4152. DOI: 10.1002/jcp.29333.
    [35]
    ZHANG J, JIANG TY, WANG SL. Application of prodrug design in improving the properties of anticancer drugs[J]. World Clinical Drugs, 2007, 28(1): 47-51. DOI: 10.3969/j.issn.1672-9188.2007.01.016.

    张婧, 姜同英, 王思玲. 前药设计在改善抗癌药物特性中的应用[J]. 世界临床药物, 2007, 28(1): 47-51. DOI: 10.3969/j.issn.1672-9188.2007.01.016.
    [36]
    WANG BW. Structural based drug design for small molecular stabilizers of p53 mutant Y220C[J/CD]. J Clin Med Literature (Electronic Edition), 2017, 4(103): 20367-20369. DOI: 10.16281/j.cnki.jocml.2017.a3.130.

    汪博闻. 基于结构的p53突变体Y220C小分子稳定剂的药物设计[J/CD]. 临床医药文献电子杂志, 2017, 4(103): 20367-20369. DOI: 10.16281/j.cnki.jocml.2017.a3.130.
    [37]
    CANDEIAS MM, HAGIWARA M, MATSUDA M. Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis[J]. Embo Reports, 2016, 17(11): 1542-1551. DOI: 10.15252/embr.201541956.
    [38]
    EARNSHAW WC, MARTINS LM, KAUFMANN SH. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis[J]. Annu Rev Biochem, 1999, 68(1): 383-424. DOI: 10.1146/annurev.biochem.68.1.383.
    [39]
    FREIEDLANDER RM. Apoptosis and caspases in neurodegenerative diseases[J]. N Engl J Med, 2003, 348(14): 1365-1375. DOI: 10.1056/NEJMra022366.
    [40]
    TAMM I, WANG Y, SAUSVILLE E, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs[J]. Cancer Res, 1998, 58(23): 5315-5320. http://cancerres.aacrjournals.org/cgi/reprint/58/23/5315.pdf
    [41]
    LAKHANISA, MASUD A, KUIDA K, et al. Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis[J]. Science, 2006, 311(5762): 847-851. DOI: 10.1126/science.1115035.
    [42]
    LV SX, QIAO X. Isovitexin (IV) induces apoptosis and autophagy in liver cancer cells through endoplasmic reticulum stress[J]. Biochem Biophys Res Commun, 2018, 496(4): 1047-1054. DOI: 10.1016/j.bbrc.2018.01.111.
    [43]
    HOU Y, ZHU B, LIU J. Respiratory syncytial virus induces the apoptosis of A549 associated with NF-κB signaling pathway activation[J]. Basic Clin Med, 2013, 10(33): 1288-1292. DOI: 10.16352/j.issn.1001-6325.2013.10.032.

    侯燕, 朱斌, 刘坚. 呼吸道合胞病毒诱导a549细胞凋亡与NF-κB信号通路有关[J]. 基础医学与临床, 2013, 10(33): 1288-1292. DOI: 10.16352/j.issn.1001-6325.2013.10.032.
    [44]
    NABEKURA T, HIROI T, KAWASAKI T, et al. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporterhuman P-glycoprotein[J]. Biomed Pharmacother, 2015, 70: 140-145. DOI: 10.1016/j.biopha.2015.01.007.
    [45]
    YANG H, CHEN D, CUI QC, et al. Celastrol, a triterpene extracted from the Chinese "Th under of God Vine, " is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice[J]. Cancer Res, 2006, 66(9): 4758-4765. DOI: 10.1158/0008-5472.CAN-05-4529.
    [46]
    WU LQ, GE HP, LUO ZQ, et al. Expression of NF-κB and P-gp protein in hepatocellular carcinoma[J]. Chin J Hepatobiliary Surg, 2007, 13(5): 314-316. DOI: 10.3760/cma.j.issn.1007-8118.2007.05.011.

    邬林泉, 戈华平, 罗志强, 等. NF-κB与P-gp在肝细胞肝癌组织中的表达[J]. 中华肝胆外科杂志, 2007, 13(5): 314-316. DOI: 10.3760/cma.j.issn.1007-8118.2007.05.011.
    [47]
    ZHANG KJ, LI DC, GAO YM, et al. Relation of expression of NF-κB, MMP-9 to HCC metastasis[J]. Chin J Hepatobiliary Surg, 2006, 12(10): 691-694. DOI: 10.3760/cma.j.issn.1007-8118.2006.10.013.

    张克君, 李德春, 高焱明, 等. Nf-κb、Mmp-9与肝细胞肝癌浸润转移的实验研究[J]. 中华肝胆外科杂志, 2006, 12(10): 691-694. DOI: 10.3760/cma.j.issn.1007-8118.2006.10.013.
    [48]
    CHATURVEDI MM, SUNG B, YADAV VR, et al. NF-κB addiction and its role in cancer: "one size does not fit all"[J]. Oncogene, 2011, 30(14): 1615-1630. DOI: 10.1038/onc.2010.566.
    [49]
    TAKADA Y, KOBAYASHI Y, AGGARWAL BB. Evodiamine abolishes constitutive and inducible NF-κB activationby inhibiting IκBα kinase activation, thereby suppressing NF-κB-regulated antiapoptotic and metastatic gene expression, upregulating apoptosis, and inhibiting invasion[J]. J Biol Chem, 2005, 290(17): 17203-17212. DOI: 10.1074/jbc.m500077200.
    [50]
    GREENSPAN EJ, MADIGAN JP, BOARDMAN LA, et al. Ibuprofen inhibits activation of nuclear β-catenin in human colon adenomas and induces the phosphorylation of GSK-3β[J]. Cancer Prev Res, 2011, 4(1): 161-171. DOI: 10.1158/1940-6207.CAPR-10-0021.
    [51]
    ZHANG T, GENG Z, LIU FC, et al. Effect of human umbilical cord mesenchymal stem cells on AGEs/RAGE/NF-κB signaling pathway in skin tissue of type 1 diabetic rat[J]. Chin J Diabetes, 2019, 27(3): 224-228. DOI: 10.3969/j.issn.1006-6187.2019.03.012.

    张涛, 耿壮, 刘方超, 等. 人脐带间充质干细胞对1型糖尿病小鼠皮肤组织AGEs/RAGE/ NF-κB信号通路影响的研究[J]. 中国糖尿病杂志, 2019, 27(3): 224-228. DOI: 10.3969/j.issn.1006-6187.2019.03.012.
    [52]
    ZHU Q, LU GY, GUI FF, et al. Effects of TNF-α on activation of NF-κB signaling pathway in hepatocellular carcinoma in vitro and its clinical significance[J]. Hebei Med J, 2018, 40(24): 3700-3703. DOI: 10.3969/j.issn.1002-7386.2018.24.004.

    朱倩, 卢贵余, 桂芬芳, 等. TNF-α对肝癌细胞NF-κB信号通路活化的影响及临床意义[J]. 河北医药, 2018, 40(24): 3700-3703. DOI: 10.3969/j.issn.1002-7386.2018.24.004.
    [53]
    YU HB, ZHANG HF, ZHANG X, et al. Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kappa B-mediated mechanism[J]. Hepatogastroenterology, 2010, 57(102/103): 1241-1246. http://www.ncbi.nlm.nih.gov/pubmed/21410066
    [54]
    LI JB, KE SD, HU SM. Effect of berberine on TNF-α-induced VEGF expression via NF-κB signaling pathway[J]. Acta Med Univ Sci Technol Huazhong, 2014, 43(4): 386-390. DOI: 10.3870/j.issn.1672-0741.2014.04.004.

    李井彬, 柯善栋, 胡少明. 黄连素通过NF-κB信号通路对TNF-α诱导的VEGF表达的影响[J]. 华中科技大学学报(医学版), 2014, 43(4): 386-390. DOI: 10.3870/j.issn.1672-0741.2014.04.004
    [55]
    GAI JS, SUN YF, ZHONG XT, et al. Multilevel Analysis on the mechanism of prunella pruneae in the treatment of optic neuropathy based on the network of "component -target-pathway" network[J]. J Chin Med Materls, 2020, 43(7): 1705-1711. DOI: 10.13863/j.issn1001-4454.2020.07.032.

    高建胜, 孙元芳, 钟小天, 等. 基于"成分-靶点-通路"网络多层次分析夏枯草治疗视神经病变的作用机制[J]. 中药材, 2020, 43(7): 1705-1711. DOI: 10.13863/j.issn1001-4454.2020.07.032.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (846) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return