中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重症肝病合并感染的纳米抗菌治疗趋势

罗珍群 罗新华

引用本文:
Citation:

重症肝病合并感染的纳米抗菌治疗趋势

DOI: 10.3969/j.issn.1001-5256.2023.03.036
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:罗珍群负责拟定写作思路,查阅文献资料,撰写文章;罗新华负责指导写作思路,修改文章并最后定稿。
详细信息
    通信作者:

    罗新华,luoxh09@163.com (ORCID: 0000-0002-0323-3868)

Trends in nano-antimicrobial therapy for severe liver disease with infection

More Information
    Corresponding author: LUO Xinhua, luoxh09@163.com (ORCID: 0000-0002-0323-3868)
  • 摘要: 重症肝病合并感染一直是临床治疗的重点难点。研究者们通过对纳米材料的不断探索发现,纳米材料由于其特殊理化性质可实现靶向抗菌及免疫调节作用。从纳米材料无抗生素的靶向抗菌、纳米药物递送系统的靶向抗菌、靶向免疫调节治疗方面,结合新近文献进展对重症肝病合并感染相关的纳米治疗可能机制作一总结,拟为临床上有效治疗重症肝病合并感染提供新的治疗策略。

     

  • [1] CASULLERAS M, ZHANG IW, LÓPEZ-VICARIO C, et al. Leukocytes, systemic inflammation and immunopathology in acute-on-chronic liver failure[J]. Cells, 2020, 9(12): 2632. DOI: 10.3390/cells9122632.
    [2] ALBILLOS A, MARTIN-MATEOS R, van der MERWE S, et al. Cirrhosis-associated immune dysfunction[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(2): 112-134. DOI: 10.1038/s41575-021-00520-7.
    [3] ALBILLOS A, de GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577. DOI: 10.1016/j.jhep.2019.10.003.
    [4] FERNÁNDEZ J, ACEVEDO J, WIEST R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67(10): 1870-1880. DOI: 10.1136/gutjnl-2017-314240.
    [5] PIANO S, SINGH V, CARACENI P, et al. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide[J]. Gastroenterology, 2019, 156(5): 1368-1380. e10. DOI: 10.1053/j.gastro.2018.12.005.
    [6] CLÀRIA J, STAUBER RE, COENRAAD MJ, et al. Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure[J]. Hepatology, 2016, 64(4): 1249-1264. DOI: 10.1002/hep.28740.
    [7] Society of Infectious Diseases, Chinese Medical Association. Expert consensus on diagnosis and treatment of end-stage liver disease complicated infection (2021 version)[J]. Clin Hepatol, 2022, 38(2): 304-310. DOI: 10.3760/cma.j.cn501113-20220209-00061.

    中华医学会感染病学分会. 终末期肝病合并感染诊治专家共识(2021年版)[J]. 临床肝胆病杂志, 2022, 38(2): 304-310. DOI: 10.3760/cma.j.cn501113-20220209-00061.
    [8] BARENHOLZ Y. Doxil®--the first FDA-approved nano-drug: lessons learned[J]. J Control Release, 2012, 160(2): 117-134. DOI: 10.1016/j.jconrel.2012.03.020.
    [9] SHAH S, DHAWAN V, HOLM R, et al. Liposomes: Advancements and innovation in the manufacturing process[J]. Adv Drug Deliv Rev, 2020, 154-155: 102-122. DOI: 10.1016/j.addr.2020.07.002.
    [10] FDA. Accelerated approval lpad pathway approval[EB/OL]. [2018-09-28]. https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2018/207356Orig1s000ltr.pdf.
    [11] GUPTA A, MUMTAZ S, LI CH, et al. Combatting antibiotic-resistant bacteria using nanomaterials[J]. Chem Soc Rev, 2019, 48(2): 415-427. DOI: 10.1039/c7cs00748e.
    [12] RIDUAN SN, ZHANG Y. Nanostructured Surfaces with multimodal antimicrobial action[J]. Acc Chem Res, 2021, 54(24): 4508-4517. DOI: 10.1021/acs.accounts.1c00542.
    [13] LINKLATER DP, BAULIN VA, LE GUÉVEL X, et al. Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes[J]. Adv Mater, 2020, 32(52): e2005679. DOI: 10.1002/adma.202005679.
    [14] WU R, OU X, TIAN R, et al. Membrane destruction and phospholipid extraction by using two-dimensional MoS2 nanosheets[J]. Nanoscale, 2018, 10(43): 20162-20170. DOI: 10.1039/c8nr04207a.
    [15] SHARMA D, MISBA L, KHAN AU. Antibiotics versus biofilm: an emerging battleground in microbial communities[J]. Antimicrob Resist Infect Control, 2019, 8: 76. DOI: 10.1186/s13756-019-0533-3.
    [16] BI X, BAI Q, LIANG M, et al. Silver peroxide nanoparticles for combined antibacterial sonodynamic and photothermal therapy[J]. Small, 2022, 18(2): e2104160. DOI: 10.1002/smll.202104160.
    [17] DING L, JIANG J, CHENG L, et al. Oral administration of nanoiron sulfide supernatant for the treatment of gallbladder stones with chronic cholecystitis[J]. ACS Appl Bio Mater, 2021, 4(5): 3773-3785. DOI: 10.1021/acsabm.0c01258.
    [18] LI J, MENG Z, ZHUANG Z, et al. Effective therapy of drug-resistant bacterial infection by killing planktonic bacteria and destructing biofilms with cationic photosensitizer based on phosphindole oxide[J]. Small, 2022, 18(17): e2200743. DOI: 10.1002/smll.202200743.
    [19] BOCATE KP, REIS GF, de SOUZA PC, et al. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus[J]. Int J Food Microbiol, 2019, 291: 79-86. DOI: 10.1016/j.ijfoodmicro.2018.11.012.
    [20] ZHOU H, TANG D, KANG X, et al. Degradable pseudo conjugated polymer nanoparticles with NIR-Ⅱ photothermal effect and cationic quaternary phosphonium structural bacteriostasis for anti-infection therapy[J]. Adv Sci (Weinh), 2022, 9(16): e2200732. DOI: 10.1002/advs.202200732.
    [21] GAO F, SHAO T, YU Y, et al. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action[J]. Nat Commun, 2021, 12(1): 745. DOI: 10.1038/s41467-021-20965-3.
    [22] AHAMAD N, KAR A, MEHTA S, et al. Immunomodulatory nanosystems for treating inflammatory diseases[J]. Biomaterials, 2021, 274: 120875. DOI: 10.1016/j.biomaterials.2021.120875.
    [23] MA Q, FAN Q, XU J, et al. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles[J]. Matter, 2020, 3(1): 287-301. DOI: 10.1016/j.matt.2020.05.017.
    [24] XI J, AN L, HUANG Y, et al. Ultrasmall FeS2 nanoparticles-decorated carbon spheres with laser-mediated ferrous ion release for antibacterial therapy[J]. Small, 2021, 17(13): e2005473. DOI: 10.1002/smll.202005473.
    [25] FENG X, XU W, LI Z, et al. Immunomodulatory nanosystems[J]. Adv Sci (Weinh), 2019, 6(17): 1900101. DOI: 10.1002/advs.201900101.
    [26] QU X, WANG M, WANG M, et al. Multi-mode antibacterial strategies enabled by gene-transfection and immunomodulatory nanoparticles in 3D-printed scaffolds for synergistic exogenous and endogenous treatment of infections[J]. Adv Mater, 2022, 34(18): e2200096. DOI: 10.1002/adma.202200096.
    [27] YE M, ZHAO Y, WANG Y, et al. PH-responsive polymer-drug conjugate: an effective strategy to combat the antimicrobial resistance[J]. Adv Funct Mater, 2020, 30(39): 2002655. DOI: 10.1002/adfm.202002655.
    [28] MIRVAKILI SM, NGO QP, LANGER R. Polymer nanocomposite microactuators for on-demand chemical release via high-frequency magnetic field excitation[J]. Nano Lett, 2020, 20(7): 4816-4822. DOI: 10.1021/acs.nanolett.0c00648.
    [29] SOTO F, WANG J, AHMED R, et al. Medical micro/nanorobots in precision medicine[J]. Adv Sci (Weinh), 2020, 7(21): 2002203. DOI: 10.1002/advs.202002203.
    [30] ARQUÉ X, TORRES M, PATIÑO T, et al. Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors[J]. ACS Nano, 2022, 16(5): 7547-7558. DOI: 10.1021/acsnano.1c11013.
    [31] MAŤÁTKOVÁ O, MICHAILIDU J, MIŠKOVSKÁ A, et al. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods[J]. Biotechnol Adv, 2022, 58: 107905. DOI: 10.1016/j.biotechadv.2022.107905.
  • 加载中
计量
  • 文章访问数:  299
  • HTML全文浏览量:  94
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 录用日期:  2022-09-09
  • 出版日期:  2023-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回