中文English
ISSN 1001-5256
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N6-甲基腺嘌呤甲基化在肝脏疾病中的作用

马艳珍 吴芙蓉 张家富 凡畅 黄少鹏 陈森 姜辉

马艳珍, 吴芙蓉, 张家富, 等. N6-甲基腺嘌呤甲基化在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2021, 37(11): 2719-2722. DOI: 10.3969/j.issn.1001-5256.2021.11.051
引用本文: 马艳珍, 吴芙蓉, 张家富, 等. N6-甲基腺嘌呤甲基化在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2021, 37(11): 2719-2722. DOI: 10.3969/j.issn.1001-5256.2021.11.051
MA YZ, WU FR, ZHANG JF, et al. Role of N6-methyladenosine methylation in liver diseases[J]. J Clin Hepatol, 2021, 37(11): 2719-2722. DOI: 10.3969/j.issn.1001-5256.2021.11.051
Citation: MA YZ, WU FR, ZHANG JF, et al. Role of N6-methyladenosine methylation in liver diseases[J]. J Clin Hepatol, 2021, 37(11): 2719-2722. DOI: 10.3969/j.issn.1001-5256.2021.11.051

N6-甲基腺嘌呤甲基化在肝脏疾病中的作用

DOI: 10.3969/j.issn.1001-5256.2021.11.051
基金项目: 

国家自然科学基金项目 81973648

详细信息
    通讯作者:

    姜辉,jhanbing@163.com

  • 中图分类号: R575

Role of N6-methyladenosine methylation in liver diseases

Research funding: 

National Natural Science Foundation of China 81973648

  • 摘要: N6-甲基腺嘌呤(m6A)是存在于多种RNAs中的化学修饰方式,最常见于mRNA。肝脏是机体重要的代谢和消化器官,m6A甲基化在肝脏生理病理过程中发挥着重要作用。简述了m6A甲基化在肝脏生理和病毒性肝炎、非酒精性脂肪性肝病、肝纤维化以及肝细胞癌等肝脏疾病中的生物学作用及潜在应用价值,指出m6A甲基化可调控相关因子,参与肝脏疾病的发生发展,为其临床诊疗提供新的思路和靶点。

     

  • 图  1  m6A甲基化参与肝脏病理生理功能的调控

    注:NAFLD,非酒精性脂肪性肝病;HCC,肝细胞癌。

  • [1] HUANG H, WENG H, SUN W, et al. Recognition of RNA N(6)- methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. DOI: 10.1038/s41556-018-0045-z.
    [2] ZHAO BS, WANG X, BEADELL AV, et al. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition[J]. Nature, 2017, 542(7642): 475-478. DOI: 10.1038/nature21355.
    [3] LIU Z, ZHANG J. Human C-to-U coding RNA editing is largely nonadaptive[J]. Mol Biol Evol, 2018, 35(4): 963-969. DOI: 10.1093/molbev/msy011.
    [4] PING XL, SUN BF, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. DOI: 10.1038/cr.2014.3.
    [5] JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. DOI: 10.1038/nchembio.687.
    [6] FU Y, JIA G, PANG X, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA[J]. Nat Commun, 2013, 4: 1798. DOI: 10.1038/ncomms2822.
    [7] SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3): 315-328. DOI: 10.1038/cr.2017.15.
    [8] HE S, WANG H, LIU R, et al. mRNA N6-methyladenosine methylation of postnatal liver development in pig[J]. PLoS One, 2017, 12(3): e0173421. DOI: 10.1371/journal.pone.0173421.
    [9] NAKANO M, ONDO K, TAKEMOTO S, et al. Methylation of adenosine at the N(6) position post-transcriptionally regulates hepatic P450s expression[J]. Biochem Pharmacol, 2020, 171: 113697. DOI: 10.1016/j.bcp.2019.113697.
    [10] JABS S, BITON A, BÉCAVIN C, et al. Impact of the gut microbiota on the m(6)A epitranscriptome of mouse cecum and liver[J]. Nat Commun, 2020, 11(1): 1344. DOI: 10.1038/s41467-020-15126-x.
    [11] FUSTIN JM, DOIM, YAMAGUCHI Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock[J]. Cell, 2013, 155(4): 793-806. DOI: 10.1016/j.cell.2013.10.026.
    [12] IMAM H, KHAN M, GOKHALE NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8829-8834. DOI: 10.1073/pnas.1808319115.
    [13] KIM GW, SIDDIQUI A. Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6-methyladenosine modification of viral/host RNAs[J]. Proc Natl Acad Sci U S A, 2021, 118(3). DOI: 10.1073/pnas.2019455118.
    [14] GOKHALE NS, MCINTYRE A, MCFADDEN MJ, et al. N6-methyladenosine in flaviviridae viral RNA genomes regulates infection[J]. Cell Host Microbe, 2016, 20(5): 654-665. DOI: 10.1016/j.chom.2016.09.015.
    [15] DURBIN AF, WANG C, MARCOTRIGIANO J, et al. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling[J]. mBio, 2016, 7(5). DOI: 10.1128/mBio.00833-16.
    [16] GOKHALE NS, MCINTYRE A, MATTOCKS MD, et al. Altered m(6)A modification of specific cellular transcripts affects flaviviridae infection[J]. Mol Cell, 2020, 77(3): 542-555. e8. DOI: 10.1016/j.molcel.2019.11.007.
    [17] RAO X, LAI L, LI X, et al. N(6) -methyladenosine modification of circular RNA circ-ARL3 facilitates hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305[J]. IUBMB Life, 2021, 73(2): 408-417. DOI: 10.1002/iub.2438.
    [18] KIM GW, SIDDIQUI A. N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition[J]. Proc Natl Acad Sci U S A, 2021, 118(10): e2022024118. DOI: 10.1073/pnas.2022024118.
    [19] KLEINER DE, BRUNT EM, VAN NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41(6): 1313-1321. DOI: 10.1002/hep.20701.
    [20] CHEN X, LUO Y, JIA G, et al. FTO promotes adipogenesis through inhibition of the Wnt/β-catenin signaling pathway in porcine intramuscular preadipocytes[J]. Anim Biotechnol, 2017, 28(4): 268-274. DOI: 10.1080/10495398.2016.1273835.
    [21] KANG H, ZHANG Z, YU L, et al. FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation[J]. J Cell Biochem, 2018, 119(7): 5676-5685. DOI: 10.1002/jcb.26746.
    [22] MERKESTEIN M, LABER S, MCMURRAY F, et al. FTO influences adipogenesis by regulating mitotic clonal expansion[J]. Nat Commun, 2015, 6: 6792. DOI: 10.1038/ncomms7792.
    [23] WU R, LIU Y, YAO Y, et al. FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(10): 1323-1330. DOI: 10.1016/j.bbalip.2018.08.008.
    [24] WANG X, ZHU L, CHEN J, et al. mRNA m6A methylation downregulates adipogenesis in porcine adipocytes[J]. Biochem Biophys Res Commun, 2015, 459(2): 201-207. DOI: 10.1016/j.bbrc.2015.02.048.
    [25] XIE W, MA LL, XU YQ, et al. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism[J]. Biochem Biophys Res Commun, 2019, 518(1): 120-126. DOI: 10.1016/j.bbrc.2019.08.018.
    [26] CHEN J, ZHOU X, WU W, et al. FTO-dependent function of N6- methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice[J]. J Physiol Biochem, 2015, 71(3): 405-413. DOI: 10.1007/s13105-015-0420-1.
    [27] ZHOU X, CHEN J, CHEN J, et al. The beneficial effects of betaine on dysfunctional adipose tissue and N6-methyladenosine mRNA methylation requires the AMP-activated protein kinase α1 subunit[J]. J Nutr Biochem, 2015, 26(12): 1678-1684. DOI: 10.1016/j.jnutbio.2015.08.014.
    [28] LU N, LI X, YU J, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6)A RNA methylation in piglets[J]. Lipids, 2018, 53(1): 53-63. DOI: 10.1002/lipd.12023.
    [29] LIU XY, LIU RX, HOU F, et al. Fibronectin expression is critical for liver fibrogenesis in vivo and inïvitro[J]. Mol Med Rep, 2016, 14(4): 3669-3675. DOI: 10.3892/mmr.2016.5673.
    [30] CUI Z, HUANG N, LIU L, et al. Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis[J]. Epigenomics, 2020, 12(19): 1707-1723. DOI: 10.2217/epi-2019-0365.
    [31] ZHU Y, PAN X, DU N, et al. ASIC1a regulates miR-350/SPRY2 by N(6) -methyladenosine to promote liver fibrosis[J]. FASEB J, 2020, 34(11): 14371-14388. DOI: 10.1096/fj.202001337R.
    [32] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
    [33] CHEN M, WEI L, LAW CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270. DOI: 10.1002/hep.29683.
    [34] MA JZ, YANG F, ZHOU CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing[J]. Hepatology, 2017, 65(2): 529-543. DOI: 10.1002/hep.28885.
    [35] YANG Z, LI J, FENG G, et al. MicroRNA-145 modulates N(6)-methyladenosine levels by targeting the 3'-untranslated mRNA region of the N(6)-methyladenosine binding YTH domain family 2 protein[J]. J Biol Chem, 2017, 292(9): 3614- 3623. DOI: 10.1074/jbc.M116.749689.
    [36] LI J, ZHU L, SHI Y, et al. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation[J]. Am J Transl Res, 2019, 11(9): 6084-6092.
    [37] CHEN Y, ZHAO Y, CHEN J, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6)A-guided epigenetic inhibition of LYPD1[J]. Mol Cancer, 2020, 19(1): 123. DOI: 10.1186/s12943-020-01239-w.
    [38] WU X, ZHANG X, TAO L, et al. Prognostic value of an m6A RNA methylation regulator-based signature in patients with hepatocellular carcinoma[J]. Biomed Res Int, 2020, 2020: 2053902. DOI: 10.1155/2020/2053902.
    [39] LIN Z, NIU Y, WAN A, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy[J]. EMBO J, 2020, 39(12): e103181. DOI: 10.15252/embj.2019103181.
  • 加载中
图(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  27
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 录用日期:  2021-06-07
  • 出版日期:  2021-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回