中文English
ISSN 1001-5256
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

促红细胞生成素产生肝细胞受体在肝纤维化、肝癌发病机制中的作用

童伟钊 刘伟 胡国信

童伟钊,刘伟,胡国信. 促红细胞生成素产生肝细胞受体在肝纤维化、肝癌发病机制中的作用[J]. 临床肝胆病杂志, 2021, 37(11): 2663-2666. DOI: 10.3969/j.issn.1001-5256.2021.11.038
引用本文: 童伟钊,刘伟,胡国信. 促红细胞生成素产生肝细胞受体在肝纤维化、肝癌发病机制中的作用[J]. 临床肝胆病杂志, 2021, 37(11): 2663-2666. DOI: 10.3969/j.issn.1001-5256.2021.11.038
TONG WZ, LIU W, HU GX. Role of erythropoietin-producing hepatocyte receptors in the pathogenesis of liver fibrosis and hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(11): 2663-2666. DOI: 10.3969/j.issn.1001-5256.2021.11.038
Citation: TONG WZ, LIU W, HU GX. Role of erythropoietin-producing hepatocyte receptors in the pathogenesis of liver fibrosis and hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(11): 2663-2666. DOI: 10.3969/j.issn.1001-5256.2021.11.038

促红细胞生成素产生肝细胞受体在肝纤维化、肝癌发病机制中的作用

DOI: 10.3969/j.issn.1001-5256.2021.11.038
基金项目: 

国家自然科学基金 81473473

详细信息
    通讯作者:

    胡国信,huguoxin8228@sina.com

  • 中图分类号: R575.2;R735.7

Role of erythropoietin-producing hepatocyte receptors in the pathogenesis of liver fibrosis and hepatocellular carcinoma

Research funding: 

National Natural Science Foundation of China 81473473

  • 摘要: 促红细胞生成素产生肝细胞(Eph)受体是受体酪氨酸激酶家族中最大的亚族,参与机体胚胎发育、血管生成、轴突导向等生理过程。近来有研究显示,Eph受体过量表达于肝纤维化及肝癌组织中,并在肝癌的生长、侵袭、转移中发挥重要作用。探讨了Eph受体在肝纤维化及肝细胞癌中的作用机制,提示Eph受体可能是肝纤维化、肝癌发生发展过程中的重要分子。

     

  • 图  1  Eph/Ephrin结构特点及双向信号通路

    图  2  Eph受体在肝纤维化、HCC中的作用机制

  • [1] KANDA T, GOTO T, HIROTSU Y, et al. Molecular mechanisms driving progression of liver cirrhosis towards hepatocellular carcinoma in chronic hepatitis B and C infections: A review[J]. Int J Mol Sci, 2019, 20(6): 1358. DOI: 10.3390/ijms20061358.
    [2] WANG YC, DAI Y, XU GL, et al. Association between EphA1 and tumor microenvironment in gastric carcinoma and its clinical significance[J]. Med Sci Monit, 2020, 26: e923409. DOI: 10.12659/MSM.923409.
    [3] LI JY, XIAO T, YI HM, et al. S897 phosphorylation of EphA2 is indispensable for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and stem properties[J]. Cancer Lett, 2019, 444: 162-174. DOI: 10.1016/j.canlet.2018.12.011.
    [4] WANG L, PENG Q, SAI B, et al. Ligand-independent EphB1 signaling mediates TGF-β-activated CDH2 and promotes lung cancer cell invasion and migration[J]. J Cancer, 2020, 11(14): 4123-4131. DOI: 10.7150/jca.44576.
    [5] WANG Y, YU H, SHAN Y, et al. EphA1 activation promotes the homing of endothelial progenitor cells to hepatocellular carcinoma for tumor neovascularization through the SDF-1/CXCR4 signaling pathway[J]. J Exp Clin Cancer Res, 2016, 35: 65. DOI: 10.1186/s13046-016-0339-6.
    [6] ANDERTON M, van der MEULEN E, BLUMENTHAL MJ, et al. The role of the Eph receptor family in tumorigenesis[J]. Cancers (Basel), 2021, 13(2): 206. DOI: 10.3390/cancers13020206.
    [7] ZHANG XH, MA N, LYU CY, et al. Role of receptor tyrosine kinase Eph in hepatocellular carcinoma[J]. Chin J Surg Oncol, 2019, 11(2): 136. DOI: 10.3969/j.issn.1674-4136.2019.02.014.

    张晓华, 马宁, 吕成余, 等. 受体酪氨酸激酶Eph受体在肝细胞癌中作用的研究进展[J]. 中国肿瘤外科杂志, 2019, 11(2): 136. DOI: 10.3969/j.issn.1674-4136.2019.02.014.
    [8] HIRAI H, MARU Y, HAGIWARA K, et al. A novel putative tyrosine kinase receptor encoded by the eph gene[J]. Science, 1987, 238(4834): 1717-1720. DOI: 10.1126/science.2825356.
    [9] LIANG LY, PATEL O, JANES PW, et al. Eph receptor signalling: From catalytic to non-catalytic functions[J]. Oncogene, 2019, 38(39): 6567-6584. DOI: 10.1038/s41388-019-0931-2.
    [10] Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee[J]. Cell, 1997, 90(3): 403-404. DOI: 10.1016/s0092-8674(00)80500-0.
    [11] PASQUALE EB. Eph receptor signalling casts a wide net on cell behaviour[J]. Nat Rev Mol Cell Biol, 2005, 6(6): 462-475. DOI: 10.1038/nrm1662.
    [12] PASQUALE EB. Eph receptors and ephrins in cancer: Bidirectional signalling and beyond[J]. Nat Rev Cancer, 2010, 10(3): 165-180. DOI: 10.1038/nrc2806.
    [13] BATLLE E, WILKINSON DG. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis[J]. Cold Spring Harb Perspect Biol, 2012, 4(1): a008227. DOI: 10.1101/cshperspect.a008227.
    [14] GONG J, KÖRNER R, GAITANOS L, et al. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance[J]. J Cell Biol, 2016, 214(1): 35-44. DOI: 10.1083/jcb.201601085.
    [15] FALIVELLI G, LISABETH EM, RUBIO de la TORRE E, et al. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands[J]. PLoS One, 2013, 8(11): e81445. DOI: 10.1371/journal.pone.0081445.
    [16] GOPAL U, BOHONOWYCH JE, LEMA-TOME C, et al. A novel extracellular Hsp90 mediated co-receptor function for LRP1 regulates EphA2 dependent glioblastoma cell invasion[J]. PLoS One, 2011, 6(3): e17649. DOI: 10.1371/journal.pone.0017649.
    [17] LARSEN AB, STOCKHAUSEN MT, POULSEN HS. Cell adhesion and EGFR activation regulate EphA2 expression in cancer[J]. Cell Signal, 2010, 22(4): 636-644. DOI: 10.1016/j.cellsig.2009.11.018.
    [18] WU B, ROCKEL JS, LAGARES D, et al. Ephrins and eph receptor signaling in tissue repair and fibrosis[J]. Curr Rheumatol Rep, 2019, 21(6): 23. DOI: 10.1007/s11926-019-0825-x.
    [19] IEGUCHI K, MARU Y. Roles of EphA1/A2 and ephrin-A1 in cancer[J]. Cancer Sci, 2019, 110(3): 841-848. DOI: 10.1111/cas.13942.
    [20] DUSABLON A, PARKS J, WHITEHURST K, et al. EphrinA1-Fc attenuates myocardial ischemia/reperfusion injury in mice[J]. PLoS One, 2017, 12(12): e0189307. DOI: 10.1371/journal.pone.0189307.
    [21] WIJERATNE D, RODGER J, STEVENSON A, et al. Ephrin-A2 affects wound healing and scarring in a murine model of excisional injury[J]. Burns, 2019, 45(3): 682-690. DOI: 10.1016/j.burns.2018.10.002.
    [22] LI Y, YAN H, WANG F, et al. Activation of EphA1-Epha receptor axis attenuates diabetic nephropathy in mice[J]. Biochem Biophys Res Commun, 2017, 486(3): 693-699. DOI: 10.1016/j.bbrc.2017.03.100.
    [23] LAGARES D, GHASSEMI-KAKROODI P, TREMBLAY C, et al. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis[J]. Nat Med, 2017, 23(12): 1405-1415. DOI: 10.1038/nm.4419.
    [24] MIMCHE PN, BRADY LM, BRAY CF, et al. The receptor tyrosine kinase EphB2 promotes hepatic fibrosis in mice[J]. Hepatology, 2015, 62(3): 900-914. DOI: 10.1002/hep.27792.
    [25] MIMCHE PN, LEE CM, MIMCHE SM, et al. EphB2 receptor tyrosine kinase promotes hepatic fibrogenesis in mice via activation of hepatic stellate cells[J]. Sci Rep, 2018, 8(1): 2532. DOI: 10.1038/s41598-018-20926-9.
    [26] CHEN X, ZHANG D, WANG Y, et al. Synergistic antifibrotic effects of miR-451 with miR-185 partly by co-targeting EphB2 on hepatic stellate cells[J]. Cell Death Dis, 2020, 11(5): 402. DOI: 10.1038/s41419-020-2613-y.
    [27] IIDA H, HONDA M, KAWAI HF, et al. Ephrin-A1 expression contributes to the malignant characteristics of {alpha}-fetoprotein producing hepatocellular carcinoma[J]. Gut, 2005, 54(6): 843-851. DOI: 10.1136/gut.2004.049486.
    [28] FAN M, LIU Y, XIA F, et al. Increased expression of EphA2 and E-N cadherin switch in primary hepatocellular carcinoma[J]. Tumori, 2013, 99(6): 689-696. DOI: 10.1700/1390.15457.
    [29] YIN JP, YUE ZC, ZHUO SY. STAT3: A key molecule in the progression of liver cancer mediated by chronic inflammation[J]. J Clin Hepatol, 2020, 36(4): 948-952. DOI: 10.3969/j.issn.1001-5256.2020.04.054.

    音金萍, 岳紫晨, 卓少元. STAT3: 慢性炎症介导肝癌进程的关键分子[J]. 临床肝胆病杂志, 2020, 36(4): 948-952. DOI: 10.3969/j.issn.1001-5256.2020.04.054.
    [30] WANG H, HOU W, PERERA A, et al. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling[J]. Cell Rep, 2021, 34(8): 108765. DOI: 10.1016/j.celrep.2021.108765.
    [31] LV XY, WANG J, HUANG F, et al. EphA3 contributes to tumor growth and angiogenesis in human gastric cancer cells[J]. Oncol Rep, 2018, 40(4): 2408-2416. DOI: 10.3892/or.2018.6586.
    [32] WANG W, JIA WD, HU B, et al. RAB10 overexpression promotes tumor growth and indicates poor prognosis of hepatocellular carcinoma[J]. Oncotarget, 2017, 8(16): 26434-26447. DOI: 10.18632/oncotarget.15507.
    [33] LU CY, YANG ZX, ZHOU L, et al. High levels of EphA3 expression are associated with high invasive capacity and poor overall survival in hepatocellular carcinoma[J]. Oncol Rep, 2013, 30(5): 2179-2186. DOI: 10.3892/or.2013.2679.
    [34] YAN Y, LUO YC, WAN HY, et al. MicroRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelial-mesenchymal transition and adhesion in hepatoma cells[J]. Hepatology, 2013, 57(2): 667-677. DOI: 10.1002/hep.26071.
    [35] CHEN G, WANG Y, ZHOU M, et al. EphA1 receptor silencing by small interfering RNA has antiangiogenic and antitumor efficacy in hepatocellular carcinoma[J]. Oncol Rep, 2010, 23(2): 563-570.
    [36] MIAO H, LI DQ, MUKHERJEE A, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt[J]. Cancer Cell, 2009, 16(1): 9-20. DOI: 10.1016/j.ccr.2009.04.009.
    [37] ZANTEK ND, AZIMI M, FEDOR-CHAIKEN M, et al. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase[J]. Cell Growth Differ, 1999, 10(9): 629-638.
    [38] LI N, SHI K, LI W. TUSC7: A novel tumor suppressor long non-coding RNA in human cancers[J]. J Cell Physiol, 2018, 233(9): 6401-6407. DOI: 10.1002/jcp.26544.
  • 加载中
图(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  17
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-08-31
  • 网络出版日期:  2021-11-16
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回