中文English
ISSN 1001-5256
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长链非编码RNA在非酒精性脂肪性肝病发生发展中的调控作用

左志华 曾楚怡 姜瑶 陶华林 郭永灿

左志华, 曾楚怡, 姜瑶, 等. 长链非编码RNA在非酒精性脂肪性肝病发生发展中的调控作用[J]. 临床肝胆病杂志, 2021, 37(7): 1704-1707. DOI: 10.3969/j.issn.1001-5256.2021.07.048
引用本文: 左志华, 曾楚怡, 姜瑶, 等. 长链非编码RNA在非酒精性脂肪性肝病发生发展中的调控作用[J]. 临床肝胆病杂志, 2021, 37(7): 1704-1707. DOI: 10.3969/j.issn.1001-5256.2021.07.048
ZUO ZH, ZENG CY, JIANG Y, et al. Regulatory role of long non-coding RNAs in the development and progression of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2021, 37(7): 1704-1707. DOI: 10.3969/j.issn.1001-5256.2021.07.048
Citation: ZUO ZH, ZENG CY, JIANG Y, et al. Regulatory role of long non-coding RNAs in the development and progression of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2021, 37(7): 1704-1707. DOI: 10.3969/j.issn.1001-5256.2021.07.048

长链非编码RNA在非酒精性脂肪性肝病发生发展中的调控作用

DOI: 10.3969/j.issn.1001-5256.2021.07.048
基金项目: 

泸州市人民政府-西南医科大学科技战略合作项目 2018LZXNYD-ZK08

详细信息
    通讯作者:

    陶华林, lzyxyjyx@163.com

    郭永灿, guoyongcan_2004@163.com

  • 中图分类号: R575.5

Regulatory role of long non-coding RNAs in the development and progression of nonalcoholic fatty liver disease

Funds: 

Luzhou Municipal People's Government & Southwest Medical University 2018LZXNYD-ZK08

  • 摘要: 非酒精性脂肪性肝病(NAFLD)是以肝细胞发生脂肪变性、脂质代谢紊乱以及异常沉积为特征的病理变化, 是最常见的肝脏疾病。长链非编码RNA(lncRNA)在NAFLD发生发展中的作用已成为当前的研究热点。总结了NAFLD中重要的lncRNA, 其主要参与调节脂质代谢、糖代谢、炎性变化等信号通路; 阐述了其促进NAFLD发生以及向肝炎、肝纤维化转变的作用机制。未来多基因组学和蛋白组学的深入研究将促进NAFLD精确的靶向治疗。

     

  • 表  1  lncRNA在NAFLD中的调控通路与作用机制

    lncRNA 全称
    靶向通路
    作用机制
    文献
    H19 - miR-130a/PPARα 调节脂质代谢 [13]
    MLXIPL 促进肝脂肪变性 [14]
    NEAT1 核富集转录体1 miR-146-5a/ROCK1/AMPK 促进脂质蓄积和脂肪变性 [15]
    miR-140/AMPK/SREBP-1 [16]
    LncARSR 舒尼替尼耐药的肾细胞癌
    中活化的lncRNA
    SREBP-1c、FASN 促进脂质合成和积累 [17]
    FLRL 脂肪肝相关lncRNA FABP5、LPL、FADS2 调节脂质代谢 [11]
    ARNTL/SIRT1 调节脂肪变性 [18]
    SRA 类固醇受体RNA激活剂 ATGL/FOXO1 调节糖代谢和胰岛素抵抗 [19]
    MEG3 lncRNA母系表达基因3 FOXO1 调节胰岛素抵抗 [20]
    miR-21/mTOR 调节脂质代谢 [21]
    LncSHGL 肝脏糖异生和脂肪形成
    的lncRNA抑制剂
    PI3K/Akt 调节糖代谢 [22]
    FOXO1 调节胰岛素抵抗 [7]
    Lnc18q22.2 - - 调节炎性反应 [23]
    Blnc1 棕色富脂lncRNA - 促进炎性因子释放和线粒体
    氧化应激
    [24]
    LXR/SREBP1c 调节脂质代谢 [25]
    GAS5 生长停滞特异性转录本5 miR-23a/PI3K/Akt/mTOR 促进肝纤维化 [26]
    HULC 肝癌高度上调lncRNA MAPK信号通路 促进肝纤维化和肝细胞凋亡 [27]
    MALAT1 肺腺癌转移相关转录物1 SREBP-1c 调节脂质代谢 [28]
    TCF7L2 调节糖代谢 [29]
    CXCL5 促进肝细胞炎症和纤维化 [30]
    注:PPARα, 过氧化物酶体增殖激活受体α; MLXIPL, MLX结合蛋白样基因; ROCK1, rho相关螺旋蛋白激酶1; AMPK, 蛋白激酶; FASN, 脂肪酸合成酶; FABP5, 脂肪酸结合蛋白5; LPL, 脂蛋白脂肪酶; FADS2, 脂肪酸去饱和酶2; ARNTL, 芳烃受体核转运蛋白样; SIRT1, NAD-依赖性的去乙酰化酶1; ATGL, 脂肪甘油三酯脂酶; FOXO1, 叉头框蛋白O1; mTOR, 哺乳动物雷帕霉素靶蛋白; PI3K, 磷酸肌醇3-激酶; Akt, 蛋白激酶B; LXR, 肝X受体; TCF7L2, 转录因子7类似物2; CXCL5, CXC趋化因子配体-5。
    下载: 导出CSV
  • [1] YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.
    [2] YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
    [3] ATANASOVSKA B, RENSEN SS, van der SIJDE MR, et al. A liver-specific long noncoding RNA with a role in cell viability is elevated in human nonalcoholic steatohepatitis[J]. Hepatology, 2017, 66(3): 794-808. DOI: 10.1002/hep.29034.
    [4] CHEN Q, XIONG C, JIA K, et al. Hepatic transcriptome analysis from HFD-fed mice defines a long noncoding RNA regulating cellular cholesterol levels[J]. J Lipid Res, 2019, 60(2): 341-352. DOI: 10.1194/jlr.M086215.
    [5] DANKO CG, HAH N, LUO X, et al. Signaling pathways differentially affect RNA polymerase Ⅱ initiation, pausing, and elongation rate in cells[J]. Mol Cell, 2013, 50(2): 212-222. DOI: 10.1016/j.molcel.2013.02.015.
    [6] GUO X, GAO L, WANG Y, et al. Advances in long noncoding RNAs: Identification, structure prediction and function annotation[J]. Brief Funct Genomics, 2016, 15(1): 38-46. DOI: 10.1093/bfgp/elv022.
    [7] HAN S, ZHANG T, KUSUMANCHI P, et al. Long non-coding RNAs in liver diseases: Focusing on nonalcoholic fatty liver disease, alcohol-related liver disease, and cholestatic liver disease[J]. Clin Mol Hepatol, 2020, 26(4): 705-714. DOI: 10.3350/cmh.2020.0166.
    [8] KOPP F, MENDELL JT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407. DOI: 10.1016/j.cell.2018.01.011.
    [9] MACDONALD WA, MANN M. Long noncoding RNA functionality in imprinted domain regulation[J]. PLoS Genet, 2020, 16(8): e1008930. DOI: 10.1371/journal.pgen.1008930.
    [10] SUN C, LIU X, YI Z, et al. Genome-wide analysis of long noncoding RNA expression profiles in patients with non-alcoholic fatty liver disease[J]. IUBMB Life, 2015, 67(11): 847-852. DOI: 10.1002/iub.1442.
    [11] CHEN Y, HUANG H, XU C, et al. Long non-coding RNA profiling in a non-alcoholic fatty liver disease rodent model: New insight into pathogenesis[J]. Int J Mol Sci, 2017, 18(1): 21. DOI: 10.3390/ijms18010021.
    [12] CHAO HW, CHAO SW, LIN H, et al. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease[J]. Int J Mol Sci, 2019, 20(2): 298. DOI: 10.3390/ijms20020298.
    [13] LIU J, TANG T, WANG GD, et al. lncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease[J]. Biosci Rep, 2019, 39(7): BSR20181722. DOI: 10.1042/BSR20181722.
    [14] WANG H, CAO Y, SHU L, et al. Long non-coding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes[J]. J Cell Mol Med, 2020, 24(2): 1399-1412. DOI: 10.1111/jcmm.14818.
    [15] CHEN X, TAN XR, LI SJ, et al. lncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease[J]. Life Sci, 2019, 235: 116829. DOI: 10.1016/j.lfs.2019.116829.
    [16] SUN Y, SONG Y, LIU C, et al. lncRNA NEAT1-MicroRNA-140 axis exacerbates nonalcoholic fatty liver through interrupting AMPK/SREBP-1 signaling[J]. Biochem Biophys Res Commun, 2019, 516(2): 584-590. DOI: 10.1016/j.bbrc.2019.06.104.
    [17] ZHANG M, CHI X, QU N, et al. Long noncoding RNA lncARSR promotes hepatic lipogenesis via Akt/SREBP-1c pathway and contributes to the pathogenesis of nonalcoholic steatohepatitis[J]. Biochem Biophys Res Commun, 2018, 499(1): 66-70. DOI: 10.1016/j.bbrc.2018.03.127.
    [18] CHEN Y, CHEN X, GAO J, et al. Long noncoding RNA FLRL2 alleviated nonalcoholic fatty liver disease through Arntl-Sirt1 pathway[J]. FASEB J, 2019, 33(10): 11411-11419. DOI: 10.1096/fj.201900643RRR.
    [19] CHEN G, YU D, NIAN X, et al. lncRNA SRA promotes hepatic steatosis through repressing the expression of adipose triglyceride lipase (ATGL)[J]. Sci Rep, 2016, 6: 35531. DOI: 10.1038/srep35531.
    [20] ZHU X, WU YB, ZHOU J, et al. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression[J]. Biochem Biophys Res Commun, 2016, 469(2): 319-325. DOI: 10.1016/j.bbrc.2015.11.048.
    [21] HUANG P, HUANG FZ, LIU HZ, et al. lncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6[J]. Metabolism, 2019, 94: 1-8. DOI: 10.1016/j.metabol.2019.01.018.
    [22] WANG J, YANG W, CHEN Z, et al. Long noncoding RNA lncSHGL recruits hnRNPA1 to suppress hepatic gluconeogenesis and lipogenesis[J]. Diabetes, 2018, 67(4): 581-593. DOI: 10.2337/db17-0799.
    [23] ZHAO XY, LI S, DELPROPOSTO JL, et al. The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health[J]. Mol Metab, 2018, 14: 60-70. DOI: 10.1016/j.molmet.2018.06.005.
    [24] TANG S, ZHU W, ZHENG F, et al. The long noncoding RNA Blnc1 protects against diet-induced obesity by promoting mitochondrial function in white fat[J]. Diabetes Metab Syndr Obes, 2020, 13: 1189-1201. DOI: 10.2147/DMSO.S248692.
    [25] ZHAO XY, XIONG X, LIU T, et al. Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis[J]. Nat Commun, 2018, 9(1): 2986. DOI: 10.1038/s41467-018-05383-2.
    [26] DONG Z, LI S, WANG X, et al. lncRNA GAS5 restrains CCl4-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(4): G539-G550. DOI: 10.1152/ajpgi.00249.2018.
    [27] SHEN X, GUO H, XU J, et al. Inhibition of lncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease[J]. J Cell Physiol, 2019, 234(10): 18169-18179. DOI: 10.1002/jcp.28450.
    [28] YAN C, CHEN J, CHEN N. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability[J]. Sci Rep, 2016, 6: 22640. DOI: 10.1038/srep22640.
    [29] MALAKAR P, STEIN I, SARAGOVI A, et al. Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2[J]. Cancer Res, 2019, 79(10): 2480-2493. DOI: 10.1158/0008-5472.CAN-18-1432.
    [30] LETI F, LEGENDRE C, STILL CD, et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells[J]. Transl Res, 2017, 190: 25-39.e21. DOI: 10.1016/j.trsl.2017.09.001.
    [31] BU FT, WANG A, ZHU Y, et al. lncRNA NEAT1: Shedding light on mechanisms and opportunities in liver diseases[J]. Liver Int, 2020, 40(11): 2612-2626. DOI: 10.1111/liv.14629.
    [32] WANG X. Down-regulation of lncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway[J]. J Cell Biochem, 2018, 119(2): 1567-1574. DOI: 10.1002/jcb.26317.
    [33] CHI Y, GONG Z, XIN H, et al. Long noncoding RNA lncARSR promotes nonalcoholic fatty liver disease and hepatocellular carcinoma by promoting YAP1 and activating the IRS2/AKT pathway[J]. J Transl Med, 2020, 18(1): 126. DOI: 10.1186/s12967-020-02225-y.
    [34] CHOONIEDASS-KOTHARI S, VINCETT D, YAN Y, et al. The protein encoded by the functional steroid receptor RNA activator is a new modulator of ER alpha transcriptional activity[J]. FEBS Lett, 2010, 584(6): 1174-1180. DOI: 10.1016/j.febslet.2010.02.024.
    [35] CHAKRABARTI P, KANDROR KV. FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes[J]. J Biol Chem, 2009, 284(20): 13296-13300. DOI: 10.1074/jbc.C800241200.
    [36] CHUNHAROJRITH P, NAKAYAMA Y, JIANG X, et al. Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line[J]. Mol Cell Endocrinol, 2015, 416: 27-35. DOI: 10.1016/j.mce.2015.08.018.
    [37] WANG X, WANG J. High-content hydrogen water-induced downregulation of miR-136 alleviates non-alcoholic fatty liver disease by regulating Nrf2 via targeting MEG3[J]. Biol Chem, 2018, 399(4): 397-406. DOI: 10.1515/hsz-2017-0303.
    [38] WANG Y, JING W, MA W, et al. Down-regulation of long non-coding RNA GAS5-AS1 and its prognostic and diagnostic significance in hepatocellular carcinoma[J]. Cancer Biomark, 2018, 22(2): 227-236. DOI: 10.3233/CBM-170781.
    [39] XIONG H, LI B, HE J, et al. lncRNA HULC promotes the growth of hepatocellular carcinoma cells via stabilizing COX-2 protein[J]. Biochem Biophys Res Commun, 2017, 490(3): 693-699. DOI: 10.1016/j.bbrc.2017.06.103.
    [40] PENG H, WANG J, LI J, et al. A circulating non-coding RNA panel as an early detection predictor of non-small cell lung cancer[J]. Life Sci, 2016, 151: 235-242. DOI: 10.1016/j.lfs.2016.03.002.
    [41] SOOKOIAN S, FLICHMAN D, GARAYCOECHEA ME, et al. Metastasis-associated lung adenocarcinoma transcript 1 as a common molecular driver in the pathogenesis of nonalcoholic steatohepatitis and chronic immune-mediated liver damage[J]. Hepatol Commun, 2018, 2(6): 654-665. DOI: 10.1002/hep4.1184.
  • 加载中
表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  47
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2020-12-18
  • 刊出日期:  2021-07-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回