中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环状RNA在肝细胞癌发生发展中的作用

蔡馨 陈娟娟 汤冬玲 张平安

引用本文:
Citation:

环状RNA在肝细胞癌发生发展中的作用

DOI: 10.3969/j.issn.1001-5256.2021.03.039
基金项目: 

国家自然科学基金 (81773444);

湖北省自然科学基金 (2019CFC846)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:蔡馨负责资料分析,撰写论文;陈娟娟、汤冬玲参与文献搜集,修改论文;张平安负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    作者简介:

    蔡馨(1998—),女,主要从事环状RNA在肝细胞癌中调节作用的相关研究

    通信作者:

    张平安,zhangpingan927@163.com

  • 中图分类号: R735.7

Role of circular RNA in the development and progression of hepatocellular carcinoma

  • 摘要: 肝细胞癌(HCC)是世界上常见的恶性肿瘤之一,研究调控HCC的侵袭迁移机制对于其临床诊断和治疗具有重要意义。环状RNA(circRNA)作为非编码RNA家族的重要成员,因其环状结构高度稳定,在肝细胞中起microRNA(miRNA)海绵作用,以竞争内源性RNA机制调控miRNA或促进靶基因表达,在HCC进展中起重要作用。探讨circRNA在HCC发病中的作用机制,将有助于筛选HCC诊断标志物和研发治疗的有效靶点。

     

  • 表  1  与HCC相关的circRNA

    circRNA 文献 作用机制
    circRHOT1 [26] circRHOT1通过启动NR2F6促进HCC的发展
    circTRIM33-12 [27] circTRIM33-12充当miR-191的海绵抑制HCC进展
    circASAP1 [28] circASAP1通过miR-326/miR-532-5p-MAPK1/CSF-1通路调控HCC进展
    circMAT2B [29] 缺氧条件下,circMAT2B通过激活circMAT2B/miR-338-3p/PKM2轴来增强糖酵解,促进HCC进展
    hsa_circ_0091570 [30] hsa_circ_0091570作为hsa-miR-1307的分子海绵抑制HCC发展
    circ-CDYL [31] circ-CDYL在HCC早期作为miR-892a和miR-328-3p的分子海绵上调,可作为分子标志物
    cSMARCA5 [21] cSMARCA5作为miR-17-3p和miR-181b-5p的分子海绵抑制HCC进展
    hsa-circRNA-103809 [32] hsa-circRNA-103809通过螯合miR-1270和上调PLAGL2促进HCC的发展
    circHECTD1 [33] circHECTD1通过miR-485-5p上调MUC1表达来促进HCC的发展
    circ_0091579 [34] circ_0091579通过miR-490-5p/CASC3轴在HCC中部分促进了细胞的增殖、迁移、侵袭和糖酵解
    circ-DENND4C [35] circ-DENND4C通过使miR-195-5p海绵化而上调TCF4来调节肝癌细胞的增殖和死亡
    circNFATC3 [36] circNFATC3可使miR-548I保护NFATC3,然后通过JNK、c-Jun、AKT和mTOR信号通路调节HCC,可作为HCC的肿瘤抑制因子
    circ_KIAA1429 [37] circ_KIAA1429可通过m6A-YTHDF3-Zeb1的机制促进HCC进展
    hsa_circ_0026134 [38] hsa_circ_0026134下调促进miR-127-5p表达,从而抑制TRIM25和IGF2BP3介导的HCC细胞增殖和侵袭
    下载: 导出CSV
  • [1] Bureau of Medical Administration, National Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition)[J]. J Clin Hepatol, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007

    中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 临床肝胆病杂志, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007
    [2] HSU MT, COCA-PRADOS M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720): 339-340. DOI: 10.1038/280339a0
    [3] ASHWAL-FLUSS R, MEYER M, PAMUDURTI NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66. DOI: 10.1016/j.molcel.2014.08.019
    [4] QU S, YANG X, LI X, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-148. DOI: 10.1016/j.canlet.2015.06.003
    [5] JECK WR, SORRENTINO JA, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. DOI: 10.1261/rna.035667.112
    [6] CHEN G, SHI Y, LIU M, et al. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(2): 175. DOI: 10.1038/s41419-017-0204-3
    [7] WU M, DENG X, ZHONG Y, et al. MafF is regulated via the circ-ITCH/miR-224-5p axis and acts as a tumor suppressor in hepatocellular carcinoma[J]. Oncol Res, 2020, 28(3): 299-309. DOI: 10.3727/096504020X15796890809840
    [8] O'GORMAN W, KWEK KY, THOMAS B, et al. Non-coding RNA in transcription initiation[J]. Biochem Soc Symp, 2006, 73: 131-140. DOI: 10.1042/bss0730131
    [9] LI Z, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264. DOI: 10.1038/nsmb.2959
    [10] WANG Y, WANG Z. Efficient backsplicing produces translatable circular mRNAs[J]. RNA, 2015, 21(2): 172-179. DOI: 10.1261/rna.048272.114
    [11] CHEN W, WU XH, SUN SG. CircRNA related databases and its application[J]. Chin J Biochem Mol Biol, 2019, 35(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWHZ201901007.htm

    陈伟, 吴仙华, 孙绍光. circRNA相关数据库及其应用[J]. 中国生物化学与分子生物学报, 2019, 35(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWHZ201901007.htm
    [12] PANDEY PR, MUNK R, KUNDU G, et al. Methods for analysis of circular RNAs[J]. Wiley Interdiscip Rev RNA, 2020, 11(1): e1566.
    [13] CHENG Q, NING D, CHEN J, et al. SIX1 and DACH1 influence the proliferation and apoptosis of hepatocellular carcinoma through regulating p53[J]. Cancer Biol Ther, 2018, 19(5): 381-390. DOI: 10.1080/15384047.2018.1423920
    [14] FU L, CHEN Q, YAO T, et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma[J]. Oncotarget, 2017, 8(27): 43878-43888. DOI: 10.18632/oncotarget.16709
    [15] LI MF, LI YH, HE YH, et al. Emerging roles of hsa_circ_0005075 targeting miR-431 in the progress of HCC[J]. Biomed Pharmacother, 2018, 99: 848-858. DOI: 10.1016/j.biopha.2018.01.150
    [16] CHEN KH, PAN JF, CHEN ZX, et al. Effects of hsa_circ_0000711 expression level on proliferation and apoptosis of hepatoma cells[J]. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4161-4171.
    [17] FU L, JIANG Z, LI T, et al. Circular RNAs in hepatocellular carcinoma: Functions and implications[J]. Cancer Med, 2018, 7(7): 3101-3109. DOI: 10.1002/cam4.1574
    [18] ZHANG X, XU Y, QIAN Z, et al. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(11): 1091. DOI: 10.1038/s41419-018-1132-6
    [19] CHEN D, ZHANG C, LIN J, et al. Screening differential circular RNA expression profiles reveal that hsa_circ_0128298 is a biomarker in the diagnosis and prognosis of hepatocellular carcinoma[J]. Cancer Manag Res, 2018, 10: 1275-1283. DOI: 10.2147/CMAR.S166740
    [20] GUAN Z, TAN J, GAO W, et al. Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway[J]. J Cell Physiol, 2018, 234(1): 500-508.
    [21] YU J, XU QG, WANG ZG, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma[J]. J Hepatol, 2018, 68(6): 1214-1227. DOI: 10.1016/j.jhep.2018.01.012
    [22] QIN M, LIU G, HUO X, et al. Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma[J]. Cancer Biomark, 2016, 16(1): 161-169. DOI: 10.3233/CBM-150552
    [23] SONG C, LI D, LIU H, et al. The competing endogenous circular RNA ADAMTS14 suppressed hepatocellular carcinoma progression through regulating microRNA-572/regulator of calcineurin 1[J]. J Cell Physiol, 2019, 234(3): 2460-2470. DOI: 10.1002/jcp.26764
    [24] TANG L, QIU LD, QIN W, et al. Expression of circular RNA FLI1 in patients with hepatocellular carcinoma and its association with prognosis[J]. J Clin Hepatol, 2019, 35(9): 1980-1984. DOI: 10.3969/j.issn.1001-5256.2019.09.019

    唐凌, 邱露蝶, 秦文, 等. 环状RNA FLI1在肝细胞癌患者中的表达及其与预后的关系[J]. 临床肝胆病杂志, 2019, 35(9): 1980-1984. DOI: 10.3969/j.issn.1001-5256.2019.09.019
    [25] HAN D, LI J, WANG H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression[J]. Hepatology, 2017, 66(4): 1151-1164. DOI: 10.1002/hep.29270
    [26] WANG L, LONG H, ZHENG Q, et al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression[J]. Mol Cancer, 2019, 18(1): 119. DOI: 10.1186/s12943-019-1046-7
    [27] ZHANG PF, WEI CY, HUANG XY, et al. Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression[J]. Mol Cancer, 2019, 18(1): 105. DOI: 10.1186/s12943-019-1031-1
    [28] HU ZQ, ZHOU SL, LI J, et al. Circular RNA sequencing identifies circASAP1 as a key regulator in hepatocellular carcinoma metastasis[J]. Hepatology, 2020, 72(3): 906-922. DOI: 10.1002/hep.31068
    [29] LI Q, PAN X, ZHU D, et al. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress[J]. Hepatology, 2019, 70(4): 1298-1316. DOI: 10.1002/hep.30671
    [30] WANG YG, WANG T, DING M, et al. hsa_circ_0091570 acts as a ceRNA to suppress hepatocellular cancer progression by sponging hsa-miR-1307[J]. Cancer Lett, 2019, 460: 128-138. DOI: 10.1016/j.canlet.2019.06.007
    [31] WEI Y, CHEN X, LIANG C, et al. A noncoding regulatory RNAs network driven by circ-CDYL acts specifically in the early stages hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 130-147. DOI: 10.1002/hep.30795
    [32] CAO Y, TAO Q, KAO X, et al. Hsa-circRNA-103809 promotes hepatocellular carcinoma development via microRNA-1270/PLAG1 like zinc finger 2 axis[J]. Dig Dis Sci, 2020. [Online ahead of print]
    [33] JIANG QL, FENG SJ, YANG ZY, et al. CircHECTD1 up-regulates mucin 1 expression to accelerate hepatocellular carcinoma development by targeting microRNA-485-5p via a competing endogenous RNA mechanism[J]. Chin Med J (Engl), 2020, 133(15): 1774-1785. DOI: 10.1097/CM9.0000000000000917
    [34] LIU W, YIN C, LIU Y. Circular RNA circ_0091579 promotes hepatocellular carcinoma proliferation, migration, invasion, and glycolysis through miR-490-5p/CASC3 axis[J]. Cancer Biother Radiopharm, 2020. [Online ahead of print]
    [35] LIU X, YANG L, JIANG D, et al. Circ-DENND4C up-regulates TCF4 expression to modulate hepatocellular carcinoma cell proliferation and apoptosis via activating Wnt/β-catenin signal pathway[J]. Cancer Cell Int, 2020, 20: 295. DOI: 10.1186/s12935-020-01346-0
    [36] JIA C, YAO Z, LIN Z, et al. circNFATC3 sponges miR-548I acts as a ceRNA to protect NFATC3 itself and suppressed hepatocellular carcinoma progression[J]. J Cell Physiol, 2021, 236(2): 1252-1269. DOI: 10.1002/jcp.29931
    [37] WANG M, YANG Y, YANG J, et al. circ_KIAA1429 accelerates hepatocellular carcinoma advancement through the mechanism of m6A-YTHDF3-Zeb1[J]. Life Sci, 2020, 257: 118082. DOI: 10.1016/j.lfs.2020.118082
    [38] ZHANG W, ZHU L, YANG G, et al. Hsa_circ_0026134 expression promoted TRIM25- and IGF2BP3-mediated hepatocellular carcinoma cell proliferation and invasion via sponging miR-127-5p[J]. Biosci Rep, 2020, 40(7): BSR20191418. DOI: 10.1042/BSR20191418
    [39] CHEN W, QUAN Y, FAN S, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression[J]. Cancer Lett, 2020, 475: 119-128. DOI: 10.1016/j.canlet.2020.01.022
    [40] XIONG DD, FENG ZB, LAI ZF, et al. High throughput circRNA sequencing analysis reveals novel insights into the mechanism of nitidine chloride against hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(9): 658. DOI: 10.1038/s41419-019-1890-9
    [41] CHEN L, KONG R, WU C, et al. Circ-MALAT1 functions as both an mRNA translation brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells[J]. Adv Sci (Weinh), 2020, 7(4): 1900949. DOI: 10.1002/advs.201900949
    [42] HUANG XY, ZHANG PF, WEI CY, et al. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis[J]. Mol Cancer, 2020, 19(1): 92. DOI: 10.1186/s12943-020-01213-6
  • 加载中
表(1)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  168
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-14
  • 录用日期:  2020-09-14
  • 出版日期:  2021-03-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回