中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道微生态与自发性细菌性腹膜炎的关系

刘玉 张宇一 邹颖 袁伟 郭红英 梅雪 王介非 钱志平

引用本文:
Citation:

肠道微生态与自发性细菌性腹膜炎的关系

DOI: 10.3969/j.issn.1001-5256.2021.02.037
基金项目: 

国家“十二五”科技重大专项 (2018ZX10725506-002);

2018年院级科研课题 (KY-GW-2018-23)

作者贡献声明:刘玉、张宇一、邹颖负责课题设计,资料分析,撰写论文;袁伟、郭红英、梅雪参与收集数据,修改论文;王介非、钱志平负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    作者简介:

    刘玉(1984—),女,主治医师,主要从事病毒学肝炎等肝病临床研究

    通信作者:

    钱志平,qianzhiping@shphc.org.cn

  • 中图分类号: R575.2

Association between intestinal microecology and spontaneous bacterial peritonitis

  • 摘要: 自发性细菌性腹膜炎(SBP)是终末期肝病的常见严重并发症,肠道微生态与SBP的发生、发展及预后密切相关,细菌易位是SBP发病的关键机制。归纳了肝硬化患者的肠道微生态特征,简述了肠道菌群在SBP发生、进展中的作用机制,为临床调整肠道微生态改善SBP提供理论基础。

     

  • [1] FIORE M, MARAOLO AE, GENTILE I, et al. Current concepts and future strategies in the antimicrobial therapy of emerging Gram-positive spontaneous bacterial peritonitis[J]. World J Hepatol, 2017, 9(30): 1166-1175. DOI: 10.4254/wjh.v9.i30.1166
    [2] SHIZUMA T. Spontaneous bacterial and fungal peritonitis in patients with liver cirrhosis: A literature review[J]. World J Hepatol, 2018, 10(2): 254-266. DOI: 10.4254/wjh.v10.i2.254
    [3] FLOCH MH. Intestinal microecology in health and wellness[J]. J Clin Gastroenterol, 2011, 10: s108-s110.
    [4] WU ZW, LI LJ. Bacterial infection of liver cirrhosis and intestinal flora[J]. J Mod Med Health, 2019, 35(2): 161-163. (in Chinese) DOI: 10.3969/j.issn.1009-5519.2019.02.001

    吴仲文, 李兰娟. 肝硬化细菌感染与肠道菌群[J]. 现代医药卫生, 2019, 35(2): 161-163. DOI: 10.3969/j.issn.1009-5519.2019.02.001
    [5] D'ARGENIO V, SALVATORE F. The role of the gut microbiome in the healthy adult status[J]. Clin Chim Acta, 2015, 451(Pt A): 97-102.
    [6] SMITH K. Liver disease: Kupffer cells regulate the progression of ALD and NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(9): 503.
    [7] PETRASEK J, BALA S, CSAK T, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice[J]. J Clin Invest, 2012, 122(10): 3476-3489. DOI: 10.1172/JCI60777
    [8] OLEFSKY JM, GLASS CK. Macrophages, inflammation, and insulin resistance[J]. Annu Rev Physiol, 2010, 72: 219-246. DOI: 10.1146/annurev-physiol-021909-135846
    [9] TILG H, CANI PD, MAYER EA. Gut microbiome and liver diseases[J]. Gut, 2016, 65(12): 2035-2044. DOI: 10.1136/gutjnl-2016-312729
    [10] MILOSEVIC I, VUJOVIC A, BARAC A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature[J]. Int J Mol Sci, 2019, 20(2): 395. DOI: 10.3390/ijms20020395
    [11] REUTER B, BAJAJ JS. Microbiome: Emerging concepts in patients with chronic liver disease[J]. Clin Liver Dis, 2020, 24(3): 493-520. DOI: 10.1016/j.cld.2020.04.006
    [12] SCHULTALBERS M, TERGAST TL, SIMON N, et al. Frequency, characteristics and impact of multiple consecutive nosocomial infections in patients with decompensated liver cirrhosis and ascites[J]. United European Gastroenterol J, 2020, 8(5): 567-576. DOI: 10.1177/2050640620913732
    [13] OLSON JC, WENDON JA, KRAMER DJ, et al. Intensive care of the patient with cirrhosis[J]. Hepatology, 2011, 54(5): 1864-1872. DOI: 10.1002/hep.24622
    [14] SEKI E, SCHNABL B. Role of innate immunity and the microbiota in liver fibrosis: Crosstalk between the liver and gut[J]. J Physiol, 2012, 590(3): 447-458. DOI: 10.1113/jphysiol.2011.219691
    [15] de ROZA MA, KAI L, KAM JW, et al. Proton pump inhibitor use increases mortality and hepatic decompensation in liver cirrhosis[J]. World J Gastroenterol, 2019, 25: 4933-4944. DOI: 10.3748/wjg.v25.i33.4933
    [16] QIN N, YANG F, LI A, et al. Alterations of the human gut microbiome in liver cirrhosis[J]. Nature, 2014, 513(7516): 59-64. DOI: 10.1038/nature13568
    [17] BAJAJ JS, BETRAPALLY NS, GILLEVET PM. Decompensated cirrhosis and microbiome interpretation[J]. Nature, 2015, 525(7569): e1-e2. DOI: 10.1038/nature14851
    [18] WANG Y, PAN CQ, XING H. Advances in gut microbiota of viral hepatitis cirrhosis[J]. Biomed Res Int, 2019, 2019: 9726786.
    [19] USAMI M, MIYOSHI M, YAMASHITA H. Gut microbiota and host metabolism in liver cirrhosis[J]. World J Gastroenterol, 2015, 21(41): 11597-11608. DOI: 10.3748/wjg.v21.i41.11597
    [20] BAJAJ JS, BETRAPALLY NS, HYLEMON PB, et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy[J]. Hepatology, 2015, 62(4): 1260-1271. DOI: 10.1002/hep.27819
    [21] LUAN YT, CAI WJ, JIANG SL, et al. A comparative study of intestinal flora between hepatitis B cirrhosis patients with or without ascites[J]. J Clin Hepatol, 2020, 36(7): 1520-1526. (in Chinese) DOI: 10.3969/j.issn.1001-5256.2020.07.015

    栾雨婷, 蔡文君, 蒋轼丽, 等. 乙型肝炎肝硬化患者伴或不伴腹水对肠道菌群的影响[J]. 临床肝胆病杂志, 2020, 36(7): 1520-1526. DOI: 10.3969/j.issn.1001-5256.2020.07.015
    [22] WIEST R, KRAG A, GERBES A. Spontaneous bacterial peritonitis: Recent guidelines and beyond[J]. Gut, 2012, 61(2): 297-310. DOI: 10.1136/gutjnl-2011-300779
    [23] HADJIVASILIS A, TZANIS A, IOAKIM KJ, et al. The diagnostic accuracy of ascitic calprotectin for the early diagnosis of spontaneous bacterial peritonitis: Systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol, 2021, 33(3): 312-318.
    [24] GUNDLING F, SCHMIDTLER F, HAPFELMEIER A, et al. Fecal calprotectin is a useful screening parameter for hepatic encephalopathy and spontaneous bacterial peritonitis in cirrhosis[J]. Liver Int, 2011, 31(9): 1406-1415. DOI: 10.1111/j.1478-3231.2011.02577.x
    [25] WEIL D, HEURGUE-BERLOT A, MONNET E, et al. Accuracy of calprotectin using the Quantum Blue Reader for the diagnosis of spontaneous bacterial peritonitis in liver cirrhosis[J]. Hepatol Res, 2019, 49(1): 72-81. DOI: 10.1111/hepr.13239
    [26] JUNG Y, WEN T, MINGLER MK, et al. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production[J]. Mucosal Immunol, 2015, 8(4): 930-942. DOI: 10.1038/mi.2014.123
    [27] LV XY, DING HG, ZHENG JF, et al. Rifaximin improves survival in cirrhotic patients with refractory ascites: A real-world study[J]. World J Gastroenterol, 2020, 26(2): 199-218. DOI: 10.3748/wjg.v26.i2.199
    [28] ASSIMAKOPOULOS SF, TSAMANDAS AC, TSIAOUSSIS GI, et al. Altered intestinal tight junctions' expression in patients with liver cirrhosis: A pathogenetic mechanism of intestinal hyperpermeability[J]. Eur J Clin Invest, 2012, 42(4): 439-446. DOI: 10.1111/j.1365-2362.2011.02609.x
    [29] RAWAT M, NIGHOT M, AL-SADI R, et al. IL1B increases intestinal tight junction permeability by upregulation of MIR200C-3p, which degrades occludin mRNA[J]. Gastroenterology, 2020, 159(4): 1375-1389. DOI: 10.1053/j.gastro.2020.06.038
    [30] SCARPELLINI E, VALENZA V, GABRIELLI M, et al. Intestinal permeability in cirrhotic patients with and without spontaneous bacterial peritonitis: Is the ring closed?[J]. Am J Gastroenterol, 2010, 105(2): 323-327. DOI: 10.1038/ajg.2009.558
    [31] MUÑOZ L, JOSÉ BORRERO M, UBEDA M, et al. Interaction between intestinal dendritic cells and bacteria translocated from the gut in rats with cirrhosis[J]. Hepatology, 2012, 56(5): 1861-1869. DOI: 10.1002/hep.25854
    [32] APPENRODT B, GRVNHAGE F, GENTEMANN MG, et al. Nucleotide-binding oligomerization domain containing 2 (NOD2) variants are genetic risk factors for death and spontaneous bacterial peritonitis in liver cirrhosis[J]. Hepatology, 2010, 51(4): 1327-1333. DOI: 10.1002/hep.23440
    [33] NISCHALKE HD, BERGER C, ALDENHOFF K, et al. Toll-like receptor (TLR) 2 promoter and intron 2 polymorphisms are associated with increased risk for spontaneous bacterial peritonitis in liver cirrhosis[J]. J Hepatol, 2011, 55(5): 1010-1016. DOI: 10.1016/j.jhep.2011.02.022
    [34] BRUNS T, PETER J, REUKEN PA, et al. NOD2 gene variants are a risk factor for culture-positive spontaneous bacterial peritonitis and monomicrobial bacterascites in cirrhosis[J]. Liver Int, 2012, 32(2): 223-230. DOI: 10.1111/j.1478-3231.2011.02561.x
    [35] HOLLMAN DA, MILONA A, van ERPECUM KJ, et al. Anti-inflammatory and metabolic actions of FXR: Insights into molecular mechanisms[J]. Biochim Biophys Acta, 2012, 1821(11): 1443-1452. DOI: 10.1016/j.bbalip.2012.07.004
    [36] LUTZ P, BERGER C, LANGHANS B, et al. A farnesoid X receptor polymorphism predisposes to spontaneous bacterial peritonitis[J]. Dig Liver Dis, 2014, 46(11): 1047-1050. DOI: 10.1016/j.dld.2014.07.008
    [37] STEIB CJ, SCHEWE J, GERBES AL. Infection as a trigger for portal hypertension[J]. Dig Dis, 2015, 33(4): 570-576. DOI: 10.1159/000375352
    [38] QUAN M, XING HC. Research progress on intestinal flora and chronic liver diseases[J/CD]. Chin J Liver Dis (Electronic Version), 2019, 11(3): 26-30. (in Chinese)

    全敏, 邢卉春. 肠道菌群与慢性肝病相关研究进展[J/CD]. 中国肝脏病杂志(电子版), 2019, 11(3): 26-30.
    [39] HORVATH A, DURDEVIC M, LEBER B, et al. Changes in the intestinal microbiome during a multispecies probiotic intervention in compensated cirrhosis[J]. Nutrients, 2020, 12(6): e1874. DOI: 10.3390/nu12061874
    [40] HORVATH A, LEBER B, SCHMERBOECK B, et al. Randomised clinical trial: The effects of a multispecies probiotic vs. placebo on innate immune function, bacterial translocation and gut permeability in patients with cirrhosis[J]. Aliment Pharmacol Ther, 2016, 44(9): 926-935. DOI: 10.1111/apt.13788
    [41] DENG X, ZHENG C, WANG S, et al. Treatment with a probiotic combination reduces abdominal adhesion in rats by decreasing intestinal inflammation and restoring microbial composition[J]. Oncol Rep, 2020, 43(3): 986-998.
    [42] HⅡPPALA K, JOUHTEN H, RONKAINEN A, et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10(8): 988. DOI: 10.3390/nu10080988
    [43] MITTAL H, WYAWAHARE M, SISTLA S. Microbiological profile of pathogens in spontaneous bacterial peritonitis secondary to liver cirrhosis: A retrospective study[J]. Trop Doct, 2020, 50(2): 138-141. DOI: 10.1177/0049475520905745
  • 加载中
计量
  • 文章访问数:  454
  • HTML全文浏览量:  71
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 录用日期:  2020-09-24
  • 出版日期:  2021-02-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回